LINKING HISTOLOGICAL GLIOBLASTOMA PHENOTYPES TO TRANSCRIPTIONAL SUBTYPES AND PROGNOSIS USING DEEP LEARNING

被引:0
|
作者
Roetzer-Pejrimovsky, Thomas [1 ]
Kiesel, Barbara [2 ]
Nenning, Karl-Heinz [3 ]
Klughammer, Johanna [4 ,5 ]
Rajchl, Martin [6 ]
Bock, Christoph [7 ]
Hainfellner, Johannes [8 ]
Baumann, Bernhard [9 ]
Langs, Georg [10 ]
Woehrer, Adelheid [1 ]
机构
[1] Med Univ Vienna, Div Neuropathol & Neurochem, Dept Neurol, Vienna, Austria
[2] Med Univ Vienna, Dept Neurosurg, Vienna, Austria
[3] Nathan S Kline Inst Psychiat Res, New York, NY USA
[4] Ludwig Maximilians Univ Munchen, Gene Ctr, Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Dept Biochem, Munich, Germany
[6] Imperial Coll London, Dept Comp & Med, London, England
[7] Austrian Acad Sci, CeMM Res Ctr Mol Med, Vienna, Austria
[8] Med Univ Vienna, Div Neuropathol & Neurochem Obersteiner Inst, Dept Neurol, Vienna, Austria
[9] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
[10] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Computat Imaging Res Lab, Vienna, Austria
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
EPCO-15
引用
收藏
页码:118 / 119
页数:2
相关论文
共 50 条
  • [41] Deep learning to identify a gene signature associated with molecular subtypes that predicts prognosis in colorectal cancer.
    Cai, Du
    Wang, Wei
    Zhong, Min-Er
    Fan, Dejun
    Liu, Xuanhui
    Li, Cheng-Hang
    Huang, Ze-Ping
    Zhu, Qiqi
    Lv, Min-Yi
    Hu, Chuling
    Duan, Xin
    Wu, Xiaojian
    Gao, Feng
    JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)
  • [42] Deep Learning Approaches for Glioblastoma Prognosis in Resource-Limited Settings: A Study Using Basic Patient Demographic, Clinical, and Surgical Inputs
    Ghanem, Marc
    Ghaith, Abdul Karim
    Zamanian, Cameron
    Bon-Nieves, Antonio
    Bhandarkar, Archis
    Bydon, Mohamad
    Quinones-Hinojosa, Alfredo
    WORLD NEUROSURGERY, 2023, 175 : E1089 - E1109
  • [43] Recognition of intraglomerular histological features with deep learning in protocol transplant biopsies and their association with kidney function and prognosis
    Farhat, Imane
    Marechal, Elise
    Calmo, Doris
    Ansart, Manon
    Paindavoine, Michel
    Bard, Patrick
    Tarris, Georges
    Ducloux, Didier
    Felix, Sophie Adrian
    Martin, Laurent
    Tinel, Claire
    Gibier, Jean-Baptiste
    Funes de la Vega, Mathilde
    Rebibou, Jean-Michel
    Bamoulid, Jamal
    Legendre, Mathieu
    CLINICAL KIDNEY JOURNAL, 2024, 17 (02)
  • [44] Identification of Unique Genetic Biomarkers of Various Subtypes of Glomerulonephritis Using Machine Learning and Deep Learning
    Qing, Jianbo
    Zheng, Fang
    Zhi, Huiwen
    Yaigoub, Hasnaa
    Tirichen, Hasna
    Li, Yaheng
    Zhao, Juanjuan
    Qiang, Yan
    Li, Yafeng
    BIOMOLECULES, 2022, 12 (09)
  • [45] Machine learning for grading and prognosis of esophageal dysplasia using mass spectrometry and histological imaging
    Beuque, Manon
    Martin-Lorenzo, Marta
    Balluff, Benjamin
    Woodruff, Henry C.
    Lucas, Marit
    de Bruin, Daniel M.
    van Timmeren, Janita E.
    de Boer, Onno J.
    Heeren, Ron M. A.
    Meijer, Sybren L.
    Lambin, Philippe
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 138
  • [46] Improve Glioblastoma Multiforme Prognosis Prediction by Using Feature Selection and Multiple Kernel Learning
    Zhang, Ya
    Li, Ao
    Peng, Chen
    Wang, Minghui
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (05) : 825 - 835
  • [47] PREDICTION OF LOWER-GRADE GLIOMA MOLECULAR SUBTYPES USING DEEP LEARNING
    Muragaki, Yoshihiro
    Matsui, Yutaka
    Maruyama, Takashi
    Nitta, Masayuki
    Saito, Taiichi
    Tsuzuki, Shunsuke
    Tamura, Manabu
    Fukuya, Yasukazu
    Asano, Hidetsugu
    Kusuda, Kaori
    Kawamata, Takakazu
    Masamune, Ken
    NEURO-ONCOLOGY, 2020, 22 : 148 - 148
  • [48] Redefining cancer subtypes using multi-omics and deep learning.
    Akalin, Altuna
    Uyar, Bora
    Ronen, Jonathan
    Franke, Vedran
    CANCER RESEARCH, 2021, 81 (13)
  • [49] Prediction of lower-grade glioma molecular subtypes using deep learning
    Yutaka Matsui
    Takashi Maruyama
    Masayuki Nitta
    Taiichi Saito
    Shunsuke Tsuzuki
    Manabu Tamura
    Kaori Kusuda
    Yasukazu Fukuya
    Hidetsugu Asano
    Takakazu Kawamata
    Ken Masamune
    Yoshihiro Muragaki
    Journal of Neuro-Oncology, 2020, 146 : 321 - 327
  • [50] Prediction of lower-grade glioma molecular subtypes using deep learning
    Matsui, Yutaka
    Maruyama, Takashi
    Nitta, Masayuki
    Saito, Taiichi
    Tsuzuki, Shunsuke
    Tamura, Manabu
    Kusuda, Kaori
    Fukuya, Yasukazu
    Asano, Hidetsugu
    Kawamata, Takakazu
    Masamune, Ken
    Muragaki, Yoshihiro
    JOURNAL OF NEURO-ONCOLOGY, 2020, 146 (02) : 321 - 327