LINKING HISTOLOGICAL GLIOBLASTOMA PHENOTYPES TO TRANSCRIPTIONAL SUBTYPES AND PROGNOSIS USING DEEP LEARNING

被引:0
|
作者
Roetzer-Pejrimovsky, Thomas [1 ]
Kiesel, Barbara [2 ]
Nenning, Karl-Heinz [3 ]
Klughammer, Johanna [4 ,5 ]
Rajchl, Martin [6 ]
Bock, Christoph [7 ]
Hainfellner, Johannes [8 ]
Baumann, Bernhard [9 ]
Langs, Georg [10 ]
Woehrer, Adelheid [1 ]
机构
[1] Med Univ Vienna, Div Neuropathol & Neurochem, Dept Neurol, Vienna, Austria
[2] Med Univ Vienna, Dept Neurosurg, Vienna, Austria
[3] Nathan S Kline Inst Psychiat Res, New York, NY USA
[4] Ludwig Maximilians Univ Munchen, Gene Ctr, Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Dept Biochem, Munich, Germany
[6] Imperial Coll London, Dept Comp & Med, London, England
[7] Austrian Acad Sci, CeMM Res Ctr Mol Med, Vienna, Austria
[8] Med Univ Vienna, Div Neuropathol & Neurochem Obersteiner Inst, Dept Neurol, Vienna, Austria
[9] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
[10] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Computat Imaging Res Lab, Vienna, Austria
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
EPCO-15
引用
收藏
页码:118 / 119
页数:2
相关论文
共 50 条
  • [31] Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques
    Rikan, Samin Babaei
    Azar, Amir Sorayaie
    Naemi, Amin
    Mohasefi, Jamshid Bagherzadeh
    Pirnejad, Habibollah
    Wiil, Uffe Kock
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [32] Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques
    Samin Babaei Rikan
    Amir Sorayaie Azar
    Amin Naemi
    Jamshid Bagherzadeh Mohasefi
    Habibollah Pirnejad
    Uffe Kock Wiil
    Scientific Reports, 14
  • [33] Predicting the survival of patients with glioblastoma using deep learning: a systematic review
    Habibi, Mohammad Amin
    Tajabadi, Zohreh
    Farsani, Ali Soltani
    Omid, Reza
    Tajabadi, Zahra
    Shobeiri, Parnian
    EGYPTIAN JOURNAL OF NEUROSURGERY, 2025, 40 (01)
  • [34] Histological Grading of the Prostate Carcinoma using Deep Learning: An Unsupervised Approach
    Bauer, Markus
    Zuerner, Sebastian
    Kreuz, Markus
    Popp, Georg
    Braumann, Ulf-Dietrich
    MEDICAL IMAGING 2021 - DIGITAL PATHOLOGY, 2021, 11603
  • [35] Prognosis patients with COVID-19 using deep learning
    José Luis Guadiana-Alvarez
    Fida Hussain
    Ruben Morales-Menendez
    Etna Rojas-Flores
    Arturo García-Zendejas
    Carlos A. Escobar
    Ricardo A. Ramírez-Mendoza
    Jianhong Wang
    BMC Medical Informatics and Decision Making, 22
  • [36] Estimating Glioblastoma Biophysical Growth Parameters Using Deep Learning Regression
    Pati, Sarthak
    Sharma, Vaibhav
    Aslam, Heena
    Thakur, Siddhesh P.
    Akbari, Hamed
    Mang, Andreas
    Subramanian, Shashank
    Biros, George
    Davatzikos, Christos
    Bakas, Spyridon
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 157 - 167
  • [37] Drug Efficacy Recommendation System of Glioblastoma (GBM) Using Deep Learning
    Naveed, Sajid
    Husnain, Mujtaba
    Samad, Ali
    Ikram, Amna
    Afreen, Hina
    Gilanie, Ghulam
    Alsubaie, Najah
    IEEE ACCESS, 2025, 13 : 10398 - 10411
  • [38] Prognosis patients with COVID-19 using deep learning
    Luis Guadiana-Alvarez, Jose
    Hussain, Fida
    Morales-Menendez, Ruben
    Rojas-Flores, Etna
    Garcia-Zendejas, Arturo
    Escobar, Carlos A.
    Ramirez-Mendoza, Ricardo A.
    Wang, Jianhong
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [39] HISTOLOGICAL SCORING OF NONALCOHOLIC FATTY LIVER DISEASE USING DEEP LEARNING
    Overgaard, Agnete
    Eschen, Christian
    Oro, Denise
    Veidal, Sanne
    HEPATOLOGY, 2019, 70 : 1059A - 1059A
  • [40] A Deep Learning Approach to Glioblastoma Radiogenomic Classification Using Brain MRI
    Emchinov, Aleksandr
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 345 - 356