LINKING HISTOLOGICAL GLIOBLASTOMA PHENOTYPES TO TRANSCRIPTIONAL SUBTYPES AND PROGNOSIS USING DEEP LEARNING

被引:0
|
作者
Roetzer-Pejrimovsky, Thomas [1 ]
Kiesel, Barbara [2 ]
Nenning, Karl-Heinz [3 ]
Klughammer, Johanna [4 ,5 ]
Rajchl, Martin [6 ]
Bock, Christoph [7 ]
Hainfellner, Johannes [8 ]
Baumann, Bernhard [9 ]
Langs, Georg [10 ]
Woehrer, Adelheid [1 ]
机构
[1] Med Univ Vienna, Div Neuropathol & Neurochem, Dept Neurol, Vienna, Austria
[2] Med Univ Vienna, Dept Neurosurg, Vienna, Austria
[3] Nathan S Kline Inst Psychiat Res, New York, NY USA
[4] Ludwig Maximilians Univ Munchen, Gene Ctr, Munich, Germany
[5] Ludwig Maximilians Univ Munchen, Dept Biochem, Munich, Germany
[6] Imperial Coll London, Dept Comp & Med, London, England
[7] Austrian Acad Sci, CeMM Res Ctr Mol Med, Vienna, Austria
[8] Med Univ Vienna, Div Neuropathol & Neurochem Obersteiner Inst, Dept Neurol, Vienna, Austria
[9] Med Univ Vienna, Ctr Med Phys & Biomed Engn, Vienna, Austria
[10] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Computat Imaging Res Lab, Vienna, Austria
关键词
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
EPCO-15
引用
收藏
页码:118 / 119
页数:2
相关论文
共 50 条
  • [1] Deep learning links localized digital pathology phenotypes with transcriptional subtype and patient outcome in glioblastoma
    Roetzer-Pejrimovsky, Thomas
    Nenning, Karl-Heinz
    Kiesel, Barbara
    Klughammer, Johanna
    Rajchl, Martin
    Baumann, Bernhard
    Langs, Georg
    Woehrer, Adelheid
    GIGASCIENCE, 2024, 13
  • [2] Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma
    Jonathan D. Young
    Chunhui Cai
    Xinghua Lu
    BMC Bioinformatics, 18
  • [3] Unsupervised deep learning reveals prognostically relevant subtypes of glioblastoma
    Young, Jonathan D.
    Cai, Chunhui
    Lu, Xinghua
    BMC BIOINFORMATICS, 2017, 18
  • [4] Deep learning identified glioblastoma subtypes based on internal genomic expression ranks
    Mao, Xing-gang
    Xue, Xiao-yan
    Wang, Ling
    Lin, Wei
    Zhang, Xiang
    BMC CANCER, 2022, 22 (01)
  • [5] A Deep Learning-Based Framework for Supporting Clinical Diagnosis of Glioblastoma Subtypes
    Munquad, Sana
    Si, Tapas
    Mallik, Saurav
    Das, Asim Bikas
    Zhao, Zhongming
    FRONTIERS IN GENETICS, 2022, 13
  • [6] Deep learning identified glioblastoma subtypes based on internal genomic expression ranks
    Xing-gang Mao
    Xiao-yan Xue
    Ling Wang
    Wei Lin
    Xiang Zhang
    BMC Cancer, 22
  • [7] Histological Subtypes Classification of Lung Cancers on CT Images Using 3D Deep Learning and Radiomics
    Guo, Yixian
    Song, Qiong
    Jiang, Mengmeng
    Guo, Yinglong
    Xu, Peng
    Zhang, Yiqian
    Fu, Chi-Cheng
    Fang, Qu
    Zeng, Mengsu
    Yao, Xiuzhong
    ACADEMIC RADIOLOGY, 2021, 28 (09) : E258 - E266
  • [8] Deep Learning for Lung Cancer Diagnosis, Prognosis and Prediction Using Histological and Cytological Images: A Systematic Review
    Davri, Athena
    Birbas, Effrosyni
    Kanavos, Theofilos
    Ntritsos, Georgios
    Giannakeas, Nikolaos
    Tzallas, Alexandros T.
    Batistatou, Anna
    CANCERS, 2023, 15 (15)
  • [9] Histological Characterization of Colorectal Polyps Using Deep Learning
    Olofson, Andrea
    Hassanpour, Saeed
    Nicka, Catherine
    Miraflor, Allen
    Gordon, Laura
    Suriawinata, Arief
    LABORATORY INVESTIGATION, 2017, 97 : 400A - 400A
  • [10] Extracting Morphological Features to Differentiate Histological Subtypes of Lung Adenocarcinoma: An Attempt to Improve Diagnostic Accuracy by Using a Deep Learning Algorithm
    Lami, Kris
    Attanoos, Richard
    Beasley, Mary Beth
    Berezowska, Sabina
    Brcic, Luka
    Cavazza, Alberto
    English, John
    Fabro, Alexandre
    Ishida, Kaori
    Kashima, Yukio
    Larsen, Brandon
    Marchevsky, Alberto
    Roden, Anja
    Schneider, Frank
    Smith, Maxwell
    Tabata, Kazuhiro
    Takano, Angela
    Tanaka, Tomonori
    Bychkov, Andrey
    Fukuoka, Junya
    LABORATORY INVESTIGATION, 2021, 101 (SUPPL 1) : 1116 - 1117