Electrical properties of ZnO nanorods studied by conductive atomic force microscopy

被引:45
|
作者
Beinik, I. [1 ]
Kratzer, M. [1 ]
Wachauer, A. [1 ]
Wang, L. [1 ]
Lechner, R. T. [1 ]
Teichert, C. [1 ]
Motz, C. [2 ]
Anwand, W. [3 ]
Brauer, G. [3 ]
Chen, X. Y. [4 ]
Hsu, X. Y. [4 ]
Djurisic, A. B. [4 ]
机构
[1] Univ Leoben, Inst Phys, A-8700 Leoben, Austria
[2] Austrian Acad Sci, Erich Schmid Inst Mat Sci, A-8700 Leoben, Austria
[3] Helmholtz Zentrum Dresden Rossendorf, Inst Strahlenphys, D-01314 Dresden, Germany
[4] Univ Hong Kong, Dept Phys, Hong Kong, Hong Kong, Peoples R China
关键词
SCHOTTKY NANOCONTACTS; SOLAR-CELLS; SURFACE; CRYSTALS; ARRAYS; CONTACT; POLAR; FACES;
D O I
10.1063/1.3623764
中图分类号
O59 [应用物理学];
学科分类号
摘要
ZnO nanostructures are promising candidates for the development of novel electronic devices due to their unique electrical and optical properties. Here, we present a complementary electrical characterization of individual upright standing and lying ZnO nanorods using conductive atomic force microscopy (C-AFM). Initially, the electrical properties of the arrays of upright standing ZnO NRs were characterized using two-dimensional current maps. The current maps were recorded simultaneously with the topography acquired by contact mode AFM. Further, C-AFM was utilized to determine the local current-voltage (I-V) characteristics of the top and side facets of individual upright standing NRs. Current-voltage characterization revealed a characteristic similar to that of a Schottky diode. Detailed discussion of the electrical properties is based on local I-V curves, as well as on the 2D current maps recorded from specific areas. (C) 2011 American Institute of Physics. [doi:10.1063/1.3623764]
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Electronic behavior of the Zn- and O-polar ZnO surfaces studied using conductive atomic force microscopy
    Moore, J. C.
    Kenny, S. M.
    Baird, C. S.
    Morkoc, H.
    Baski, A. A.
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
  • [22] Electrical conductivity measurement of λ DNA molecules by conductive atomic force microscopy
    Wang, Ying
    Xie, Ying
    Gao, Mingyan
    Zhang, Wenxiao
    Liu, Lanjiao
    Qu, Yingmin
    Wang, Jiajia
    Hu, Cuihua
    Song, Zhengxun
    Wang, Zuobin
    NANOTECHNOLOGY, 2022, 33 (05)
  • [23] The current image of a single CuO nanowire studied by conductive atomic force microscopy
    Cheng, Gang
    Wang, Shujie
    Cheng, Ke
    Jiang, Xiaohong
    Wang, Lixiang
    Li, Linsong
    Du, Zuliang
    Zou, Guangtian
    APPLIED PHYSICS LETTERS, 2008, 92 (22)
  • [24] Understanding Pt-ZnO:In Schottky nanocontacts by conductive atomic force microscopy
    Chirakkara, Saraswathi
    Choudhury, Palash Roy
    Nanda, K. K.
    Krupanidhi, S. B.
    MATERIALS RESEARCH EXPRESS, 2016, 3 (04):
  • [25] Conductive tips for atomic force microscopy
    不详
    INDUSTRIAL CERAMICS, 2005, 25 (02): : 139 - 139
  • [26] Surface Properties of Elastomeric Polypropylenes Studied with Atomic Force Microscopy
    Dietz, C.
    Zerson, M.
    Riesch, C.
    Franke, M.
    Magerle, R.
    MACROMOLECULES, 2008, 41 (23) : 9259 - 9266
  • [27] Properties of single dendrimer molecules studied by atomic force microscopy
    Zhang, H
    Grim, PCM
    Foubert, P
    Vosch, T
    Vanoppen, P
    Wiesler, UM
    Berresheim, AJ
    Müllen, K
    De Schryver, FC
    LANGMUIR, 2000, 16 (23) : 9009 - 9014
  • [28] Biomechanical properties of glioblastoma cells studied by atomic force microscopy
    Zielinski, T.
    Orzechowska, B.
    Zemla, J.
    Suchy, K.
    Lekka, M.
    FEBS OPEN BIO, 2019, 9 : 195 - 195
  • [29] Electrical properties of Molecular Beam Epitaxy grown Barium Titanate probed by conductive Atomic Force Microscopy
    Martin, Simon
    Baboux, Nicolas
    Albertini, David
    Gautier, Brice
    THIN SOLID FILMS, 2017, 642 : 324 - 327
  • [30] The resistive switching in TiO2 films studied by conductive atomic force microscopy and Kelvin probe force microscopy
    Du, Yuanmin
    Kumar, Amit
    Pan, Hui
    Zeng, Kaiyang
    Wang, Shijie
    Yang, Ping
    Wee, Andrew Thye Shen
    AIP ADVANCES, 2013, 3 (08):