On the Behavior of Periodic Solutions of Planar Autonomous Hamiltonian Systems with Multivalued Periodic Perturbations

被引:2
|
作者
Makarenkov, Oleg [1 ,2 ]
Malaguti, Luisa [3 ]
Nistri, Paolo [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Russian Acad Sci, Inst Control Sci, Moscow, Russia
[3] Univ Modena & Reggio Emilia, Dipartimento Sci & Metodi Ingn, I-42100 Reggio Emilia, Italy
[4] Univ Siena, Dipartimento Ingn Informaz, I-53100 Siena, Italy
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2011年 / 30卷 / 02期
关键词
Planar Hamiltonian systems; characteristic multipliers; multivalued periodic perturbations; periodic solutions; approximation formula; BIFURCATION;
D O I
10.4171/ZAA/1428
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Aim of the paper is to provide a method to analyze the behavior of T-periodic solutions x(epsilon), epsilon > 0, of a perturbed planar Hamiltonian system near a cycle x(0), of smallest period T, of the unperturbed system. The perturbation is represented by a T-periodic multivalued map which vanishes as epsilon -> 0. In several problems from nonsmooth mechanical systems this multivalued perturbation comes from the Filippov regularization of a nonlinear discontinuous T-periodic term. Through the paper, assuming the existence of a T-periodic solution x(epsilon) for epsilon > 0 small, under the condition that x(0) is a nondegenerate cycle of the linearized unperturbed Hamiltonian system we provide a formula for the distance between any point x(0)(t) and the trajectories x(epsilon)([0, T)) along a transversal direction to x(0)(t).
引用
收藏
页码:129 / 144
页数:16
相关论文
共 50 条