Periodic Solutions of Superlinear Convex Autonomous Hamiltonian Systems

被引:0
|
作者
GEORGE DINCĂ
DANIEL Pasca
机构
[1] University of Bucharest,Faculty of Mathematics
[2] University of Oradea,Department of Mathematics
来源
关键词
Nontrivial periodic solutions; Szulkin's variant of mountain pass theorem;
D O I
暂无
中图分类号
学科分类号
摘要
Using the Szulkin's variant of Mountain Pass Theorem, we prove the existence of nontrivial orbits with prescribed period for autonomous Hamiltonian systems in infinite dimen-sional Hilbert spaces.
引用
收藏
页码:65 / 75
页数:10
相关论文
共 50 条
  • [1] Periodic solutions of superlinear convex autonomous Hamiltonian systems
    Dinca, G
    Pasca, D
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2000, 17 (1-4) : 65 - 75
  • [2] Periodic solutions of superlinear autonomous Hamiltonian systems with prescribed period
    An, Tianqing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 323 (02) : 854 - 863
  • [3] Periodic solutions to superlinear planar Hamiltonian systems
    Boscaggin, Alberto
    [J]. PORTUGALIAE MATHEMATICA, 2012, 69 (02) : 127 - 140
  • [4] On the minimal periodic solutions of nonconvex superlinear Hamiltonian systems
    An, Tianqing
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (02) : 1273 - 1284
  • [5] Infinitely many solutions for superlinear periodic Hamiltonian elliptic systems
    Xu, Xiaoming
    Kuang, Qiaoyan
    Gong, Yanping
    [J]. BOUNDARY VALUE PROBLEMS, 2015,
  • [6] Rotating periodic solutions for convex Hamiltonian systems
    Xing, Jiamin
    Yang, Xue
    Li, Yong
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 89 : 91 - 96
  • [7] PERIODIC SOLUTIONS OF SUPERLINEAR PLANAR HAMILTONIAN SYSTEMS WITH INDEFINITE TERMS
    Wang, Shuang
    Liu, Chunlian
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2542 - 2554
  • [8] Infinitely many solutions for superlinear periodic Hamiltonian elliptic systems
    Xiaoming Xu
    Qiaoyan Kuang
    Yanping Gong
    [J]. Boundary Value Problems, 2015
  • [9] PERIODIC-SOLUTIONS WITH PRESCRIBED MINIMAL PERIOD FOR CONVEX AUTONOMOUS HAMILTONIAN-SYSTEMS
    EKELAND, I
    HOFER, H
    [J]. INVENTIONES MATHEMATICAE, 1985, 81 (01) : 155 - 188
  • [10] Multiple periodic solutions of the second order Hamiltonian systems with superlinear terms
    Li, Xiaoli
    Su, Jiabao
    Tian, Rushun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 1 - 11