Multiple periodic solutions of the second order Hamiltonian systems with superlinear terms

被引:6
|
作者
Li, Xiaoli [1 ,2 ]
Su, Jiabao [1 ]
Tian, Rushun [1 ,3 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Tsinghua Univ, Dept Math, Beijing 100084, Peoples R China
[3] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
关键词
Hamiltonian systems; Homological linking; Morse theory; Periodic solutions; Bifurcation method; RESONANCE; EQUATION;
D O I
10.1016/j.jmaa.2011.06.061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of 2 pi-periodic solutions of the second order Hamiltonian systems -sic- A(t)sic = lambda x + nu'sic(t, sic) with superlinear terms and with saddle structure near the origin. Some multiplicity results are obtained by using bifurcation method, homological linking and Morse theory. (c) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 50 条
  • [1] Homoclinic orbits for periodic second order Hamiltonian systems with superlinear terms
    Lv, Haiyan
    Chen, Guanwei
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (61) : 1 - 9
  • [2] Periodic second order superlinear Hamiltonian systems
    Schechter, Martin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) : 546 - 562
  • [3] PERIODIC SOLUTIONS OF SUPERLINEAR PLANAR HAMILTONIAN SYSTEMS WITH INDEFINITE TERMS
    Wang, Shuang
    Liu, Chunlian
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (05): : 2542 - 2554
  • [4] Notes on Multiple Periodic Solutions for Second Order Hamiltonian Systems
    Ye, Yiwei
    Liu, Shan
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [5] Notes on Multiple Periodic Solutions for Second Order Hamiltonian Systems
    Yiwei Ye
    Shan Liu
    [J]. Qualitative Theory of Dynamical Systems, 2022, 21
  • [6] Multiple periodic solutions for second-order discrete Hamiltonian systems
    Wang, Da-Bin
    Guo, Man
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (02): : 410 - 418
  • [7] Multiple periodic solutions for second-order discrete Hamiltonian systems
    Yan, Sheng-Hua
    Wu, Xing-Ping
    Tang, Chun-Lei
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 142 - 149
  • [8] Periodic solutions for second order Hamiltonian systems
    Qiongfen Zhang
    X. H. Tang
    [J]. Applications of Mathematics, 2012, 57 : 407 - 425
  • [9] Periodic solutions of second order Hamiltonian systems
    Llibre, Jaume
    Makhlouf, Amar
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (02): : 214 - 221
  • [10] Periodic solutions for second order Hamiltonian systems
    Zhang, Qiongfen
    Tang, X. H.
    [J]. APPLICATIONS OF MATHEMATICS, 2012, 57 (04) : 407 - 425