Notes on Multiple Periodic Solutions for Second Order Hamiltonian Systems

被引:0
|
作者
Yiwei Ye
Shan Liu
机构
[1] Chongqing Normal University,School of Mathematical Sciences
关键词
Periodic solution; Second order Hamiltonian systems; Subquadratic; Local linking; Sobolev’s inequality; 34B15; 34C25; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the multiplicity of periodic solutions for the second order Hamiltonian systems u¨+∇F(t,u)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{u}+\nabla F(t,u)=0$$\end{document} with the boundary condition u(0)-u(T)=u˙(0)-u˙(T)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u(0)-u(T)=\dot{u}(0)-\dot{u}(T)=0$$\end{document}, where the potential F is either subquadratic k(t)-concave or subquadratic μ(t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu (t)$$\end{document}-convex. Based on the reduction method and a three-critical-point theorem due to Brezis and Nirenberg, we obtain the multiplicity results, which complement and sharply improve some related results in the literature.
引用
收藏
相关论文
共 50 条
  • [1] Notes on Multiple Periodic Solutions for Second Order Hamiltonian Systems
    Ye, Yiwei
    Liu, Shan
    [J]. QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)
  • [2] Notes on multiple periodic solutions for second-order discrete Hamiltonian system
    Ding, Liang
    Wei, Jinlong
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2017, 32 (04): : 544 - 552
  • [3] Multiple periodic solutions of the second order Hamiltonian systems with superlinear terms
    Li, Xiaoli
    Su, Jiabao
    Tian, Rushun
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (01) : 1 - 11
  • [4] Multiple periodic solutions for second-order discrete Hamiltonian systems
    Wang, Da-Bin
    Guo, Man
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (02): : 410 - 418
  • [5] Multiple periodic solutions for second-order discrete Hamiltonian systems
    Yan, Sheng-Hua
    Wu, Xing-Ping
    Tang, Chun-Lei
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 234 : 142 - 149
  • [6] Periodic solutions for second order Hamiltonian systems
    Qiongfen Zhang
    X. H. Tang
    [J]. Applications of Mathematics, 2012, 57 : 407 - 425
  • [7] Periodic solutions of second order Hamiltonian systems
    Llibre, Jaume
    Makhlouf, Amar
    [J]. DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2013, 28 (02): : 214 - 221
  • [8] Periodic solutions for second order Hamiltonian systems
    Zhang, Qiongfen
    Tang, X. H.
    [J]. APPLICATIONS OF MATHEMATICS, 2012, 57 (04) : 407 - 425
  • [9] PERIODIC SOLUTIONS FOR SECOND ORDER HAMILTONIAN SYSTEMS
    D'Agui, Giuseppina
    Livrea, Roberto
    [J]. MATEMATICHE, 2011, 66 (01): : 125 - +
  • [10] Notes on Nontrivial Multiple Periodic Solutions for Second-Order Discrete Hamiltonian System
    Ding, Liang
    Wei, Jinlong
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (06) : 4393 - 4409