Periodic solutions of planar Hamiltonian systems with asymmetric nonlinearities

被引:0
|
作者
Wang, Zaihong [1 ]
Ma, Tiantian [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Capital Normal Univ, Editorial Dept Journal, Beijing 100048, Peoples R China
来源
关键词
asymmetric nonlinearity; periodic solution; Poincare-Birkhoff twist theorem; POINCARE-BIRKHOFF THEOREM; SEMILINEAR DUFFING EQUATIONS; RESONANCE; MULTIPLICITY; EXISTENCE;
D O I
10.1186/s13661-017-0780-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we look for periodic solutions of planar Hamiltonian systems { x' = f (y) + p(1)(t, y), {y' = -g( x) + p(2)(t, x). By using the Poincare- Birkhoff twist theorem, we prove the existence and multiplicity of periodic solutions of the given system when f satisfies an asymmetric condition and the related time map satisfies an oscillating condition.
引用
收藏
页数:16
相关论文
共 50 条