A consistent procedure for determining the number of clusters in regression clustering

被引:18
|
作者
Shao, Q [1 ]
Wu, Y [1 ]
机构
[1] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
关键词
clustering; multiple regression; model selection; consistency;
D O I
10.1016/j.jspi.2004.04.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, an information-based criterion for determining the number of clusters in the problem of regression clustering is proposed. It is shown that, under a probabilistically structured population, the proposed criterion selects the true number of regression hyperplanes with probability one among all class-growing sequences of classifications, when the number of observations n from the population increases to infinity. Results from a simulation study are also presented. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:461 / 476
页数:16
相关论文
共 50 条
  • [41] An optimal hierarchically clustering number determining method
    Zhou, Hongfang
    Zhao, Xuehan
    Li, Hongyan
    Wang, Peng
    Qin, Zhentao
    Journal of Computational Information Systems, 2012, 8 (09): : 3791 - 3798
  • [42] A Method for Automatically Determining The Number of Clusters of LAC
    Liu, Han
    Wu, Qingfeng
    Dong, Huailin
    Wang, Shuangshuang
    Cai, Qing
    Ma, Zhuo
    ICCSSE 2009: PROCEEDINGS OF 2009 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE & EDUCATION, 2009, : 1907 - +
  • [43] AN IMPLEMENTATION OF THE MAP PROCEDURE FOR DETERMINING THE NUMBER OF FACTORS
    RUIZ, MA
    SANMARTIN, R
    PSICOTHEMA, 1993, 5 (01) : 177 - 182
  • [44] Procedure for determining defects in sputtered clusters of ionic crystals
    Sharopov U.B.
    Atabaev B.G.
    Djabbarganov R.
    Kurbanov M.K.
    Sharipov M.M.
    Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques, 2016, 10 (1) : 245 - 249
  • [45] Does Number of Clusters Effect the Purity and Entropy of Clustering?
    Uddin, Jamal
    Ghazali, Rozaida
    Deris, Mustafa Mat
    RECENT ADVANCES ON SOFT COMPUTING AND DATA MINING, 2017, 549 : 355 - 365
  • [46] Estimating the Number of Clusters Based on Sequential Clustering Algorithms
    Real, Eduardo Machado
    PROCEEDINGS OF 2016 5TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS 2016), 2016, : 229 - 234
  • [47] UNSUPERVISED CLUSTERING ON SIGNED GRAPHS WITH UNKNOWN NUMBER OF CLUSTERS
    Dittrich, Thomas
    Matz, Gerald
    28TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2020), 2021, : 1060 - 1064
  • [48] Estimating the number of clusters in a dataset via consensus clustering
    Unlu, Ramazan
    Xanthopoulos, Petros
    EXPERT SYSTEMS WITH APPLICATIONS, 2019, 125 (33-39) : 33 - 39
  • [49] Distributed Fuzzy Clustering with Automatic Detection of the Number of Clusters
    Vendramin, L.
    Campello, R. J. G. B.
    Coletta, L. F. S.
    Hruschka, E. R.
    INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE, 2011, 91 : 133 - 140
  • [50] The upper bound of the optimal number of clusters in fuzzy clustering
    于剑
    程乾生
    ScienceinChina(SeriesF:InformationSciences), 2001, (02) : 119 - 125