A consistent procedure for determining the number of clusters in regression clustering

被引:18
|
作者
Shao, Q [1 ]
Wu, Y [1 ]
机构
[1] York Univ, Dept Math & Stat, N York, ON M3J 1P3, Canada
关键词
clustering; multiple regression; model selection; consistency;
D O I
10.1016/j.jspi.2004.04.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, an information-based criterion for determining the number of clusters in the problem of regression clustering is proposed. It is shown that, under a probabilistically structured population, the proposed criterion selects the true number of regression hyperplanes with probability one among all class-growing sequences of classifications, when the number of observations n from the population increases to infinity. Results from a simulation study are also presented. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:461 / 476
页数:16
相关论文
共 50 条
  • [21] Federated Clustering with Unknown Number of Clusters
    Zou, Rong
    Zhang, Yunfan
    Zhang, Yiqun
    Lu, Yang
    Li, Mengke
    Cheung, Yiu-ming
    2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024, 2024, : 671 - 677
  • [22] On the optimal number of clusters in histogram clustering
    Buhmann, JM
    Held, M
    CLASSIFICATION, AUTOMATION, AND NEW MEDIA, 2002, : 37 - 45
  • [23] Determining the number of clusters in cluster analysis
    My-Young Cheong
    Hakbae Lee
    Journal of the Korean Statistical Society, 2008, 37 : 135 - 143
  • [24] Deep Embedding for Determining the Number of Clusters
    Wang, Yiqi
    Shi, Zhan
    Guo, Xifeng
    Liu, Xinwang
    Zhu, En
    Yin, Jianping
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 8173 - 8174
  • [25] Determining the number of clusters by sampling with replacement
    Tonidandel, S
    Overall, JE
    PSYCHOLOGICAL METHODS, 2004, 9 (02) : 238 - 249
  • [26] Consistent selection of the number of clusters via crossvalidation
    Wang, Junhui
    BIOMETRIKA, 2010, 97 (04) : 893 - 904
  • [27] Determining the number of clusters in cluster analysis
    Cheong, My-Young
    Lee, Hakbae
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2008, 37 (02) : 135 - 143
  • [28] A NEW APPROACH FOR DETERMINING NUMBER OF CLUSTERS
    Erisoglu, Murat
    Erisoglu, Ulku
    Servi, Tayfun
    Sakallioglu, Sadullah
    PAKISTAN JOURNAL OF STATISTICS, 2012, 28 (01): : 141 - 158
  • [29] Optimal Clustering Number Determining Algorithm by the New Clustering Method
    Zhu E.-Z.
    Sun Y.
    Zhang Y.-X.
    Gao X.
    Ma R.-H.
    Li X.-J.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (10): : 3085 - 3103
  • [30] Distance based k-means clustering algorithm for determining number of clusters for high dimensional data
    Alibuhtto, Mohamed Cassim
    Mahat, Nor Idayu
    DECISION SCIENCE LETTERS, 2020, 9 (01) : 51 - 58