On noncoercive elliptic problems

被引:1
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] King Abdulaziz Univ, Dept Math, Fac Sci, POB 80203, Jidda 21589, Saudi Arabia
[3] Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
关键词
Positive solution; Nonlinear regularity; Nonlinear maximum principle; Critical groups; Local linking; Nodal solution; SIGN;
D O I
10.1007/s00030-016-0394-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear noncoercive elliptic equation driven by the p-Laplacian. We show that if the L-infinity-perturbation has small norm, then the problem admits a positive solution. Moreover, if the L-infinity-perturbation is nonzero and nonnegative, then we find two positive solutions. Also, we consider a class of semilinear equations with an indefinite and unbounded potential. Using critical groups, we show that there is a nontrivial solution and under a global sign condition, we show that this solutions is nodal. Our results extend and improve a recent work of Radulescu
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Equilibrium problems and noncoercive variational inequalities
    Chadli, O
    Chbani, Z
    Riahi, H
    [J]. OPTIMIZATION, 2001, 50 (1-2) : 17 - 27
  • [32] Existence Result for Solutions to Some Noncoercive Elliptic Equations
    Marah, A.
    Redwane, H.
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2023, 187 (01)
  • [33] An existence result for nonlinear and noncoercive problems
    Del Vecchio, T
    Posteraro, MR
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (1-2) : 191 - 206
  • [34] MINIMA OF SOME NONCONVEX NONCOERCIVE PROBLEMS
    GIACHETTI, D
    SCHIANCHI, R
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 165 : 109 - 120
  • [35] Existence results for noncoercive variational problems
    Crasta, G
    Malusa, A
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (06) : 2064 - 2076
  • [36] Existence and multiplicity of solutions for asymptotically linear, noncoercive elliptic equations
    Dumitru Motreanu
    Viorica V. Motreanu
    Nikolaos S. Papageorgiou
    [J]. Monatshefte für Mathematik, 2010, 159 : 59 - 80
  • [37] On the justification of the Galerkin method for noncoercive elliptic equations with monotone nonlinearity
    Kokurin, MY
    [J]. DIFFERENTIAL EQUATIONS, 1997, 33 (03) : 428 - 431
  • [38] ENTROPY SOLUTIONS TO NONCOERCIVE NONLINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA
    Huang, Shuibo
    Su, Tong
    Du, Xinsheng
    Zhang, Xinqiu
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [39] Noncoercive quasilinear elliptic operators with singular lower order terms
    Fernando Farroni
    Luigi Greco
    Gioconda Moscariello
    Gabriella Zecca
    [J]. Calculus of Variations and Partial Differential Equations, 2021, 60
  • [40] Existence and multiplicity of solutions for asymptotically linear, noncoercive elliptic equations
    Motreanu, Dumitru
    Motreanu, Viorica V.
    Papageorgiou, Nikolaos S.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2010, 159 (1-2): : 59 - 80