On noncoercive elliptic problems

被引:1
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] King Abdulaziz Univ, Dept Math, Fac Sci, POB 80203, Jidda 21589, Saudi Arabia
[3] Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
关键词
Positive solution; Nonlinear regularity; Nonlinear maximum principle; Critical groups; Local linking; Nodal solution; SIGN;
D O I
10.1007/s00030-016-0394-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a nonlinear noncoercive elliptic equation driven by the p-Laplacian. We show that if the L-infinity-perturbation has small norm, then the problem admits a positive solution. Moreover, if the L-infinity-perturbation is nonzero and nonnegative, then we find two positive solutions. Also, we consider a class of semilinear equations with an indefinite and unbounded potential. Using critical groups, we show that there is a nontrivial solution and under a global sign condition, we show that this solutions is nodal. Our results extend and improve a recent work of Radulescu
引用
收藏
页数:17
相关论文
共 50 条
  • [21] On the homogenization of noncoercive variational problems
    Zhikov V.V.
    Rychago M.E.
    [J]. Journal of Mathematical Sciences, 1997, 85 (6) : 2363 - 2372
  • [22] NONLINEAR NONCOERCIVE NEUMANN PROBLEMS
    Gasinski, Leszek
    Klimczak, Liliana
    Papageorgiou, Nikolaos S.
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (04) : 1107 - 1123
  • [23] Noncoercive parabolic obstacle problems
    Farroni, Fernando
    Greco, Luigi
    Moscariello, Gioconda
    Zecca, Gabriella
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [24] EXISTENCE THEOREMS FOR NONLINEAR NONCOERCIVE OPERATOR EQUATIONS AND NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS
    GUPTA, CP
    HESS, P
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1976, 22 (02) : 305 - 313
  • [25] Noncoercive problems and asymptotic conditions
    Laboratoire de Mathématiques Appliquées, CNRS, Faculté des Sciences, av. de l'Université, 64000 Pau, France
    [J]. Asymptotic Anal, 2006, 3-4 (205-215):
  • [26] Noncoercive problems and asymptotic conditions
    Penot, Jean-Paul
    [J]. ASYMPTOTIC ANALYSIS, 2006, 49 (3-4) : 205 - 215
  • [27] EXISTENCE AND NONUNIQUENESS OF SOLUTIONS OF A NONCOERCIVE ELLIPTIC VARIATIONAL INEQUALITY
    SZULKIN, A
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 45 : 413 - 418
  • [28] Equilibrium problems and noncoercive variational inequalities
    Chadli, O
    Chbani, Z
    Riahi, H
    [J]. OPTIMIZATION, 2001, 50 (1-2) : 17 - 27
  • [29] Noncoercive elliptic equations with discontinuous coefficients in unbounded domains
    Monsurro, Sara
    Transirico, Maria
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 163 : 86 - 103
  • [30] Existence Result for Solutions to Some Noncoercive Elliptic Equations
    A. Marah
    H. Redwane
    [J]. Acta Applicandae Mathematicae, 2023, 187