MACHINE LEARNING MODELS TO PREDICT 24-HOUR URINE ABNORMALITIES FROM ELECTRONIC HEALTH RECORD-DERIVED FEATURES

被引:0
|
作者
Kavoussi, Nicholas
Abraham, Abin
Sui, Wilson
Bejan, Cosmin
Capra, John
Hsi, Ryan
机构
来源
JOURNAL OF UROLOGY | 2021年 / 206卷
关键词
D O I
暂无
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
MP54-19
引用
收藏
页码:E957 / E957
页数:1
相关论文
共 50 条
  • [31] A Clinician's Guide to Running Custom Machine-Learning Models in an Electronic Health Record Environment
    Ryu, Alexander J.
    Ayanian, Shant
    Qian, Ray
    Core, Marcia A.
    Heaton, Heather A.
    Lamb, Matthew W.
    Parikh, Riddhi S.
    Boyum, Jens P.
    Garza, Esteban L.
    Condon, Jennifer L.
    Peters, Steve G.
    [J]. MAYO CLINIC PROCEEDINGS, 2023, 98 (03) : 445 - 450
  • [32] Initial Validation of a Machine Learning-Derived Prognostic Test (KidneyIntelX) Integrating Biomarkers and Electronic Health Record Data To Predict Longitudinal Kidney Outcomes
    Chauhan, Kinsuk
    Nadkarni, Girish N.
    Fleming, Fergus
    McCullough, James
    He, Cijiang J.
    Quackenbush, John
    Murphy, Barbara
    Donovan, Michael J.
    Coca, Steven G.
    Bonventre, Joseph, V
    [J]. KIDNEY360, 2020, 1 (08): : 731 - 739
  • [33] Predicting Survival From Large Echocardiography and Electronic Health Record Datasets Optimization With Machine Learning
    Samad, Manar D.
    Ulloa, Alvaro
    Wehner, Gregory J.
    Jing, Linyuan
    Hartzel, Dustin
    Good, Christopher W.
    Williams, Brent A.
    Haggerty, Christopher M.
    Fornwalt, Brandon K.
    [J]. JACC-CARDIOVASCULAR IMAGING, 2019, 12 (04) : 681 - 689
  • [34] Emulating Control Arms for Cancer Clinical Trials Using External Cohorts Created From Electronic Health Record-Derived Real-World Data
    Tan, Katherine
    Bryan, Jonathan
    Segal, Brian
    Bellomo, Lawrence
    Nussbaum, Nate
    Tucker, Melisa
    Torres, Aracelis Z.
    Bennette, Carrie
    Capra, William
    Curtis, Melissa
    Miksad, Rebecca A.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2022, 111 (01) : 168 - 178
  • [35] Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform
    Ren, Yuanfang
    Loftus, Tyler J.
    Datta, Shounak
    Ruppert, Matthew M.
    Guan, Ziyuan
    Miao, Shunshun
    Shickel, Benjamin
    Feng, Zheng
    Giordano, Chris
    Upchurch, Gilbert R., Jr.
    Rashidi, Parisa
    Ozrazgat-Baslanti, Tezcan
    Bihorac, Azra
    [J]. JAMA NETWORK OPEN, 2022, 5 (05)
  • [36] The Development and Validation of a Machine Learning Model to Predict Bacteremia and Fungemia in Hospitalized Patients Using Electronic Health Record Data
    Bhavani, Sivasubramanium V.
    Lonjers, Zachary
    Carey, Kyle A.
    Afshar, Majid
    Gilbert, Emily R.
    Shah, Nirav S.
    Huang, Elbert S.
    Churpek, Matthew M.
    [J]. CRITICAL CARE MEDICINE, 2020, 48 (11) : E1020 - E1028
  • [37] Bidirectional Representation Learning From Transformers Using Multimodal Electronic Health Record Data to Predict Depression
    Meng, Yiwen
    Speier, William
    Ong, Michael K.
    Arnold, Corey W.
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (08) : 3121 - 3129
  • [38] Machine learning models to detect and predict patient safety events using electronic health records: A systematic review
    Deimazar, Ghasem
    Sheikhtaheri, Abbas
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2023, 180
  • [39] Use of Machine Learning to Accurately Predict Adverse Events in Patients with Peripheral Artery Disease Using Electronic Health Record Data
    Ross, Elsie G.
    Shah, Nigam
    Leeper, Nicholas
    [J]. VASCULAR MEDICINE, 2016, 21 (03) : 290 - 290
  • [40] Use of Machine Learning to Accurately Predict Adverse Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data
    Ross, Elsie G.
    Leeper, Nicholas
    Shah, Nigam
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2016, 36