Use of Machine Learning to Accurately Predict Adverse Events in Patients with Peripheral Artery Disease Using Electronic Health Record Data

被引:0
|
作者
Ross, Elsie G. [1 ]
Shah, Nigam [2 ]
Leeper, Nicholas [1 ]
机构
[1] Stanford Hlth Care, Stanford, CA USA
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
YIA 2
引用
收藏
页码:290 / 290
页数:1
相关论文
共 50 条
  • [1] Use of Machine Learning to Accurately Predict Adverse Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data
    Ross, Elsie G.
    Leeper, Nicholas
    Shah, Nigam
    [J]. ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2016, 36
  • [2] Predicting Future Cardiovascular Events in Patients With Peripheral Artery Disease Using Electronic Health Record Data
    Ross, Elsie Gyang
    Jung, Kenneth
    Dudley, Joel T.
    Li, Li
    Leeper, Nicholas J.
    Shah, Nigam H.
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2019, 12 (03):
  • [3] Machine Learning Model to Accurately Identify Rheumatoid Arthritis Patients Using Raw Electronic Health Record Data
    Gilvaz, Vinit
    Reginato, Anthony
    Dalal, Deepan
    Crough, Brad
    [J]. ARTHRITIS & RHEUMATOLOGY, 2022, 74 : 2766 - 2767
  • [4] Machine Learning to Identify Patients at High Risk for Peripheral Arterial Disease From Electronic Health Record Data
    Sonderman, Mark
    Farber-Eger, Eric
    Aday, Aaron W.
    Freiberg, Matthew S.
    Beckman, Joshua A.
    Wells, Quinn
    [J]. CIRCULATION, 2020, 142
  • [5] The Development and Validation of a Machine Learning Model to Predict Bacteremia and Fungemia in Hospitalized Patients Using Electronic Health Record Data
    Bhavani, Sivasubramanium V.
    Lonjers, Zachary
    Carey, Kyle A.
    Afshar, Majid
    Gilbert, Emily R.
    Shah, Nirav S.
    Huang, Elbert S.
    Churpek, Matthew M.
    [J]. CRITICAL CARE MEDICINE, 2020, 48 (11) : E1020 - E1028
  • [6] MACHINE LEARNING ACCURATELY CLASSIFIES TEMPORAL ARTERY BIOPSIES IN THE ELECTRONIC MEDICAL RECORD
    McMaster, Christopher
    Yang, Victor
    Leung, Jessica
    Owen, Claire
    Buchanan, Russell
    Liew, David
    [J]. INTERNAL MEDICINE JOURNAL, 2021, 51 : 43 - 43
  • [7] Prediction of Atherosclerotic Cardiovascular Disease Risk Using Machine Learning and Electronic Health Record Data
    Ward, Andrew
    Sarraju, Ashish
    Chung, Sukyung
    Palaniappan, Latha
    Scheinker, David
    Rodriguez, Fatima
    [J]. CIRCULATION, 2019, 140
  • [8] Development of a Machine Learning Model Using Electronic Health Record Data to Identify Antibiotic Use Among Hospitalized Patients
    Moehring, Rebekah W.
    Phelan, Matthew
    Lofgren, Eric
    Nelson, Alicia
    Dodds Ashley, Elizabeth
    Anderson, Deverick J.
    Goldstein, Benjamin A.
    [J]. JAMA NETWORK OPEN, 2021, 4 (03)
  • [9] A machine learning model to predict therapeutic inertia in type 2 diabetes using electronic health record data
    Mcdaniel, C. C.
    Lo-Ciganic, W. -h.
    Huang, J.
    Chou, C.
    [J]. JOURNAL OF ENDOCRINOLOGICAL INVESTIGATION, 2024, 47 (06) : 1419 - 1433
  • [10] Development and Validation of Machine Learning Models to Predict Bacteremia and Fungemia Using Electronic Health Record (EHR) Data
    Bhavani, S.
    Lonjers, Z.
    Carey, K.
    Gilbert, E. R.
    Afshar, M.
    Shah, N.
    Huang, E.
    Churpek, M. M.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2020, 201