Semantic segmentation of vertebrate microfossils from computed tomography data using a deep learning approach

被引:8
|
作者
Hou, Yemao [1 ,2 ,3 ]
Canul-Ku, Mario [4 ]
Cui, Xindong [2 ,3 ,5 ]
Hasimoto-Beltran, Rogelio [4 ]
Zhu, Min [2 ,3 ,5 ]
机构
[1] Xidian Univ, Sch Life Sci & Technol, Xian 710071, Peoples R China
[2] Chinese Acad Sci, Key Lab Vertebrate Evolut & Human Origins, Inst Vertebrate Paleontol & Paleoanthropol, Beijing 100044, Peoples R China
[3] CAS Ctr Excellence Life & Paleoenvironm, Beijing 100044, Peoples R China
[4] Ctr Invest Matemat CIMAT, Guanajuato 36023, Mexico
[5] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
VIRTUAL WORLD; IMAGE;
D O I
10.5194/jm-40-163-2021
中图分类号
Q91 [古生物学];
学科分类号
0709 ; 070903 ;
摘要
Vertebrate microfossils have broad applications in evolutionary biology and stratigraphy research areas such as the evolution of hard tissues and stratigraphic correlation. Classification is one of the basic tasks of vertebrate microfossil studies. With the development of techniques for virtual paleontology, vertebrate microfossils can be classified efficiently based on 3D volumes. The semantic segmentation of different fossils and their classes from CT data is a crucial step in the reconstruction of their 3D volumes. Traditional segmentation methods adopt thresholding combined with manual labeling, which is a time-consuming process. Our study proposes a deep-learning-based (DL-based) semantic segmentation method for vertebrate microfossils from CT data. To assess the performance of the method, we conducted extensive experiments on nearly 500 fish microfossils. The results show that the intersection over union (IoU) performance metric arrived at least 94.39 %, meeting the semantic segmentation requirements of paleontologists. We expect that the DL-based method could also be applied to other fossils from CT data with good performance.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 50 条
  • [21] Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning
    Koo, Hyun Jung
    Lee, June-Goo
    Ko, Ji Yeon
    Lee, Gaeun
    Kang, Joon-Won
    Kim, Young-Hak
    Yang, Dong Hyun
    KOREAN JOURNAL OF RADIOLOGY, 2020, 21 (06) : 660 - 669
  • [22] Automated segmentation of five different body tissues on computed tomography using deep learning
    Pu, Lucy
    Gezer, Naciye S.
    Ashraf, Syed F.
    Ocak, Iclal
    Dresser, Daniel E.
    Dhupar, Rajeev
    MEDICAL PHYSICS, 2023, 50 (01) : 178 - 191
  • [23] Semantic segmentation of PolSAR image data using advanced deep learning model
    Rajat Garg
    Anil Kumar
    Nikunj Bansal
    Manish Prateek
    Shashi Kumar
    Scientific Reports, 11
  • [24] Semantic segmentation of PolSAR image data using advanced deep learning model
    Garg, Rajat
    Kumar, Anil
    Bansal, Nikunj
    Prateek, Manish
    Kumar, Shashi
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [25] Segmentation of ADPKD Computed Tomography Images with Deep Learning Approach for Predicting Total Kidney Volume
    Sheng, Ting-Wen
    Onthoni, Djeane Debora
    Gupta, Pushpanjali
    Lee, Tsong-Hai
    Sahoo, Prasan Kumar
    BIOMEDICINES, 2025, 13 (02)
  • [26] Kidney segmentation from computed tomography images using deep neural network
    da Cruz, Luana Batista
    Lima Araujo, Jose Denes
    Ferreira, Jonnison Lima
    Bandeira Diniz, Joao Otavio
    Silva, Aristofanes Correa
    Sousa de Almeida, Joao Dallyson
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 123
  • [27] Deep learning for cerebral angiography segmentation from non-contrast computed tomography
    Klimont, Michal
    Oronowicz-Jaskowiak, Agnieszka
    Flieger, Mateusz
    Rzeszutek, Jacek
    Juszkat, Robert
    Jonczyk-Potoczna, Katarzyna
    PLOS ONE, 2020, 15 (07):
  • [28] Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning
    Baskaran, Lohendran
    Al'Aref, Subhi J.
    Maliakal, Gabriel
    Lee, Benjamin C.
    Xu, Zhuoran
    Choi, Jeong W.
    Lee, Sang-Eun
    Sung, Ji Min
    Lin, Fay Y.
    Dunham, Simon
    Mosadegh, Bobak
    Kim, Yong-Jin
    Gottlieb, Ilan
    Lee, Byoung Kwon
    Chun, Eun Ju
    Cademartiri, Filippo
    Maffei, Erica
    Marques, Hugo
    Shin, Sanghoon
    Choi, Jung Hyun
    Chinnaiyan, Kavitha
    Hadamitzky, Martin
    Conte, Edoardo
    Andreini, Daniele
    Pontone, Gianluca
    Budoff, Matthew J.
    Leipsic, Jonathon A.
    Raff, Gilbert L.
    Virmani, Renu
    Samady, Habib
    Stone, Peter H.
    Berman, Daniel S.
    Narula, Jagat
    Bax, Jeroen J.
    Chang, Hyuk-Jae
    Min, James K.
    Shaw, Leslee J.
    PLOS ONE, 2020, 15 (05):
  • [29] A Deep Learning Approach to Enhance Semantic Segmentation of Bacteria and Pus Cells from Microscopic Urine Smear Images Using Synthetic Data
    Kanabur, Vidyashree R.
    Vijayasenan, Deepu
    David, Sumam S.
    Govindan, Sreejith
    COMPUTER VISION AND IMAGE PROCESSING, CVIP 2023, PT I, 2024, 2009 : 244 - 255
  • [30] Survey on semantic segmentation using deep learning techniques
    Lateef, Fahad
    Ruichek, Yassine
    NEUROCOMPUTING, 2019, 338 : 321 - 348