Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning

被引:23
|
作者
Baskaran, Lohendran [1 ,2 ,3 ,4 ]
Al'Aref, Subhi J. [1 ,2 ,3 ]
Maliakal, Gabriel [5 ]
Lee, Benjamin C. [1 ]
Xu, Zhuoran [1 ]
Choi, Jeong W. [1 ]
Lee, Sang-Eun [6 ,7 ]
Sung, Ji Min [6 ]
Lin, Fay Y. [1 ,2 ,3 ]
Dunham, Simon [1 ]
Mosadegh, Bobak [1 ]
Kim, Yong-Jin [8 ]
Gottlieb, Ilan [9 ]
Lee, Byoung Kwon [10 ]
Chun, Eun Ju [11 ]
Cademartiri, Filippo [12 ]
Maffei, Erica [13 ]
Marques, Hugo [14 ]
Shin, Sanghoon [7 ]
Choi, Jung Hyun [15 ]
Chinnaiyan, Kavitha [16 ]
Hadamitzky, Martin [17 ]
Conte, Edoardo [18 ]
Andreini, Daniele [18 ]
Pontone, Gianluca [18 ]
Budoff, Matthew J. [19 ]
Leipsic, Jonathon A. [20 ]
Raff, Gilbert L. [16 ]
Virmani, Renu [16 ,21 ]
Samady, Habib [22 ]
Stone, Peter H. [23 ]
Berman, Daniel S. [24 ]
Narula, Jagat [25 ,26 ]
Bax, Jeroen J. [27 ]
Chang, Hyuk-Jae [6 ]
Min, James K. [1 ,2 ,3 ]
Shaw, Leslee J. [1 ,2 ,3 ]
机构
[1] Weill Cornell Med, Dalio Inst Cardiovasc Imaging, New York, NY 10065 USA
[2] New York Presbyterian Hosp, Dept Radiol, New York, NY 10038 USA
[3] Weill Cornell Med, New York, NY 10065 USA
[4] Natl Heart Ctr, Dept Cardiovasc Med, Singapore, Singapore
[5] Cleerly Inc, New York, NY USA
[6] Yonsei Univ, Integrat Cardiovasc Imaging Ctr, Severance Cardiovasc Hosp, Div Cardiol,Coll Med, Seoul, South Korea
[7] Ewha Womans Univ, Dept Internal Med, Div Cardiol, Seoul Hosp, Seoul, South Korea
[8] Seoul Natl Univ, Seoul Natl Univ Hosp, Cardiovasc Ctr, Dept Internal Med,Coll Med, Seoul, South Korea
[9] Casa Saude Sao Jose, Dept Radiol, Rio De Janeiro, Brazil
[10] Yonsei Univ, Gangnam Severance Hosp, Div Cardiol, Coll Med, Seoul, South Korea
[11] Seoul Natl Univ, Dept Radiol, Bundang Hosp, Sungnam, South Korea
[12] SDN IRCCS, Cardiovasc Imaging Ctr, Naples, Italy
[13] ASUR Marche, Dept Radiol, Area Vasta 1, Urbino, Italy
[14] Hosp Luz, Unit Cardiovasc Imaging, UNICA, Lisbon, Portugal
[15] Pusan Univ Hosp, Busan, South Korea
[16] William Beaumont Hosp, Dept Cardiol, Royal Oak, MI 48072 USA
[17] German Heart Ctr Munich, Dept Radiol & Nucl Med, Munich, Germany
[18] IRCCS, Ctr Cardiol Monzino, Milan, Italy
[19] Los Angeles Biomed Res Inst, Dept Med, Torrance, CA USA
[20] Univ British Columbia, Dept Med & Radiol, Vancouver, BC, Canada
[21] CVPath Inst, Dept Pathol, Gaithersburg, MD USA
[22] Emory Univ, Sch Med, Div Cardiol, Atlanta, GA 30322 USA
[23] Harvard Med Sch, Brigham & Womens Hosp, Cardiovasc Div, Boston, MA 02115 USA
[24] Cedars Sinai Med Ctr, Dept Imaging & Med, Los Angeles, CA 90048 USA
[25] Icahn Sch Med Mt Sinai, Mt Sinai Heart Zena & Michael Wiener Cardiovasc I, New York, NY 10029 USA
[26] Icahn Sch Med Mt Sinai, Henry R Kravis Ctr Cardiovasc Hlth, New York, NY 10029 USA
[27] Leiden Univ, Dept Cardiol, Med Ctr, Leiden, Netherlands
来源
PLOS ONE | 2020年 / 15卷 / 05期
基金
美国国家卫生研究院;
关键词
HEART;
D O I
10.1371/journal.pone.0232573
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Segmentation of cardiovascular images is resource-intensive. We design an automated deep learning method for the segmentation of multiple structures from Coronary Computed Tomography Angiography (CCTA) images. Methods Images from a multicenter registry of patients that underwent clinically-indicated CCTA were used. The proximal ascending and descending aorta (PAA, DA), superior and inferior vena cavae (SVC, IVC), pulmonary artery (PA), coronary sinus (CS), right ventricular wall (RVW) and left atrial wall (LAW) were annotated as ground truth. The U-net-derived deep learning model was trained, validated and tested in a 70:20:10 split. Results The dataset comprised 206 patients, with 5.130 billion pixels. Mean age was 59.9 +/- 9.4 yrs., and was 42.7% female. An overall median Dice score of 0.820 (0.782, 0.843) was achieved. Median Dice scores for PAA, DA, SVC, IVC, PA, CS, RVW and LAW were 0.969 (0.979, 0.988), 0.953 (0.955, 0.983), 0.937 (0.934, 0.965), 0.903 (0.897, 0.948), 0.775 (0.724, 0.925), 0.720 (0.642, 0.809), 0.685 (0.631, 0.761) and 0.625 (0.596, 0.749) respectively. Apart from the CS, there were no significant differences in performance between sexes or age groups. Conclusions An automated deep learning model demonstrated segmentation of multiple cardiovascular structures from CCTA images with reasonable overall accuracy when evaluated on a pixel level.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] AUTOMATIC SEGMENTATION OF CARDIOVASCULAR STRUCTURES IMAGED ON CARDIAC COMPUTED TOMOGRAPHY ANGIOGRAPHY USING DEEP LEARNING
    Baskaran, Lohendran
    Singh, Gurpreet
    Xu, Zhuoran
    Lee, Benjamin
    Choi, Jeong
    Gianni, Umberto
    van Rosendael, Alexander
    van den Hoogen, Inge J.
    Dunham, Simon
    Mosadegh, Bobak
    Lin, Fay
    Chang, Hyuk-Jae
    Min, James
    Shaw, Leslee J.
    Al'Aref, Subhi
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 3497 - 3497
  • [2] DEEP LEARNING BASED AUTOMATIC SEGMENTATION OF CARDIAC COMPUTED TOMOGRAPHY
    Singh, Gurpreet
    Alaref, Subhi
    Maliakal, Gabriel
    Pandey, Mohit
    van Rosendael, Alexander
    Lee, Benjamin
    Wang, Jing
    Xu, Zhouran
    Min, James
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 1643 - 1643
  • [3] Automatic Segmentation of the Left Atrium from Computed Tomography Angiography Images
    Kazi, Amaan
    Betko, Sage
    Salvi, Anish
    Menon, Prahlad G.
    [J]. ANNALS OF BIOMEDICAL ENGINEERING, 2023, 51 (08) : 1713 - 1722
  • [4] Automatic Segmentation of the Left Atrium from Computed Tomography Angiography Images
    Amaan Kazi
    Sage Betko
    Anish Salvi
    Prahlad G. Menon
    [J]. Annals of Biomedical Engineering, 2023, 51 : 1713 - 1722
  • [5] Liver segmentation from computed tomography images using cascade deep learning
    Araujo, Jose Denes Lima
    da Cruz, Luana Batista
    Diniz, Joao Otavio Bandeira
    Ferreira, Jonnison Lima
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    Gattass, Marcelo
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 140
  • [6] Automatic Segmentation of Type A Aortic Dissection on Computed Tomography Images Using Deep Learning Approach
    Guo, Xiaoya
    Liu, Tianshu
    Yang, Yi
    Dai, Jianxin
    Wang, Liang
    Tang, Dalin
    Sun, Haoliang
    [J]. DIAGNOSTICS, 2024, 14 (13)
  • [7] AB-ResUNet plus : Improving Multiple Cardiovascular Structure Segmentation from Computed Tomography Angiography Images
    Habijan, Marija
    Galic, Irena
    Romic, Kresimir
    Leventic, Hrvoje
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [8] Deep-Learning-Based Automatic Segmentation of Parotid Gland on Computed Tomography Images
    Onder, Merve
    Evli, Cengiz
    Tuerk, Ezgi
    Kazan, Orhan
    Bayrakdar, Ibrahim Sevki
    Celik, Ozer
    Costa, Andre Luiz Ferreira
    Gomes, Joao Pedro Perez
    Ogawa, Celso Massahiro
    Jagtap, Rohan
    Orhan, Kaan
    [J]. DIAGNOSTICS, 2023, 13 (04)
  • [9] Automatic segmentation of the thoracic aorta in cardiac computed tomography images
    Vera, Miguel
    Huerfano, Yoleidy
    Contreras, Julio
    Vera, Maria
    Del Mar, Atilio
    Chacon, Jose
    Wilches-Duran, Sandra
    Graterol-Rivas, Modesto
    Riano-Wilches, Daniela
    Rojas, Joselyn
    Bermudez, Valmore
    [J]. REVISTA LATINOAMERICANA DE HIPERTENSION, 2016, 11 (04): : 110 - 116
  • [10] Deep Learning for Detection of Intracranial Aneurysms from Computed Tomography Angiography Images
    Liu, Xiujuan
    Mao, Jun
    Sun, Ning
    Yu, Xiangrong
    Chai, Lei
    Tian, Ye
    Wang, Jianming
    Liang, Jianchao
    Tao, Haiquan
    Yuan, Lihua
    Lu, Jiaming
    Wang, Yang
    Zhang, Bing
    Wu, Kaihua
    Wang, Yiding
    Chen, Mengjiao
    Wang, Zhishun
    Lu, Ligong
    [J]. JOURNAL OF DIGITAL IMAGING, 2023, 36 (01) : 114 - 123