Cross-subject EEG emotion classification based on few-label adversarial domain adaption

被引:25
|
作者
Wang, Yingdong [1 ,2 ]
Liu, Jiatong [1 ]
Ruan, Qunsheng [1 ]
Wang, Shuocheng [1 ]
Wang, Chen [1 ]
机构
[1] Xiamen Univ, Sch Informat, 422 Siming South Rd, Xiamen, Fujian, Peoples R China
[2] Guangzhou Panu Polytech, Sch Informat Engn, 1342 Shiliang Rd, Guangzhou, Guangdong, Peoples R China
关键词
Electroencephalogram (EEG); Emotion classification; Cross-subject; Few label adversarial domain adaption;
D O I
10.1016/j.eswa.2021.115581
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between the source domain and the target domain. However, it is an enormous challenge to make a discriminator-based domain adaptation with a small target data and transform the target domain to the source domain. In the present study, a novel method called "few-label adversarial domain adaption"(FLADA) is proposed for cross-subject emotion classification tasks with small EEG data. The proposed method involves three steps: (a) Selecting subjects of the close source domain forming an adapted list. Few labeled target data are tested based on each emotion model of the source subject to get the subject list of the source domain. (b)Training three models based on each selected subject and the target subject. Three loss functions and six groups' dataset are designed to get a domain adaption model for each selected source subject. (c) Distilling all classifiers for classifying the target emotion. In general, the main purpose of the proposed method, which originates from the Meta-learning, is to find a feature representation that is broadly suitable for the target subject and source subject with limited labels. The proposed method can be applied to all deep learning oriented models. In order to evaluate the performance of the proposed method, extensive experiments are carried out on SEED and DEAP datasets, which are public datasets. It is found that with a small amount of target data, the proposed FLADA model outperforms the state-of-art methods in terms of accuracy and AUC-ROC. All codes generated in this article are available at github: https://github.com/heibaipei/FLADA.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Cross-subject emotion EEG signal recognition based on source microstate analysis
    Zhang, Lei
    Xiao, Di
    Guo, Xiaojing
    Li, Fan
    Liang, Wen
    Zhou, Bangyan
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [22] Evolutionary Ensemble Learning for EEG-Based Cross-Subject Emotion Recognition
    Zhang, Hanzhong
    Zuo, Tienyu
    Chen, Zhiyang
    Wang, Xin
    Sun, Poly Z. H.
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (07) : 3872 - 3881
  • [23] Multisource Transfer Learning for Cross-Subject EEG Emotion Recognition
    Li, Jinpeng
    Qiu, Shuang
    Shen, Yuan-Yuan
    Liu, Cheng-Lin
    He, Huiguang
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (07) : 3281 - 3293
  • [24] GNN-based multi-source domain prototype representation for cross-subject EEG emotion recognition
    Guo, Yi
    Tang, Chao
    Wu, Hao
    Chen, Badong
    Neurocomputing, 2024, 609
  • [25] EEG-based cross-subject emotion recognition using multi-source domain transfer learning
    Quan, Jie
    Li, Ying
    Wang, Lingyue
    He, Renjie
    Yang, Shuo
    Guo, Lei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [26] Multi-Class Transfer Learning and Domain Selection for Cross-Subject EEG Classification
    Maswanganyi, Rito Clifford
    Tu, Chungling
    Owolawi, Pius Adewale
    Du, Shengzhi
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [27] Depersonalized Cross-Subject Vigilance Estimation with Adversarial Domain Generalization
    Ma, Bo-Qun
    Li, He
    Luo, Yun
    Lu, Bao-Liang
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [28] Dynamic Domain Adaptation for Class-Aware Cross-Subject and Cross-Session EEG Emotion Recognition
    Li, Zhunan
    Zhu, Enwei
    Jin, Ming
    Fan, Cunhang
    He, Huiguang
    Cai, Ting
    Li, Jinpeng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (12) : 5964 - 5973
  • [29] Domain adaptation for EEG-based, cross-subject epileptic seizure prediction
    Jemal, Imene
    Abou-Abbas, Lina
    Henni, Khadidja
    Mitiche, Amar
    Mezghani, Neila
    FRONTIERS IN NEUROINFORMATICS, 2024, 18
  • [30] Cross-Subject Cognitive Workload Recognition Based on EEG and Deep Domain Adaptation
    Zhou, Yueying
    Wang, Pengpai
    Gong, Peiliang
    Wei, Fulin
    Wen, Xuyun
    Wu, Xia
    Zhang, Daoqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72