Cross-subject EEG emotion classification based on few-label adversarial domain adaption

被引:25
|
作者
Wang, Yingdong [1 ,2 ]
Liu, Jiatong [1 ]
Ruan, Qunsheng [1 ]
Wang, Shuocheng [1 ]
Wang, Chen [1 ]
机构
[1] Xiamen Univ, Sch Informat, 422 Siming South Rd, Xiamen, Fujian, Peoples R China
[2] Guangzhou Panu Polytech, Sch Informat Engn, 1342 Shiliang Rd, Guangzhou, Guangdong, Peoples R China
关键词
Electroencephalogram (EEG); Emotion classification; Cross-subject; Few label adversarial domain adaption;
D O I
10.1016/j.eswa.2021.115581
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emotion classification signal based on the electroencephalogram (EEG) is an important part of big data associated with health. One of the main challenges in this regard is the varying patterns of EEG indifferent subjects. Domain adaptation is an effective method to reduce the data difference between the source domain and the target domain. However, it is an enormous challenge to make a discriminator-based domain adaptation with a small target data and transform the target domain to the source domain. In the present study, a novel method called "few-label adversarial domain adaption"(FLADA) is proposed for cross-subject emotion classification tasks with small EEG data. The proposed method involves three steps: (a) Selecting subjects of the close source domain forming an adapted list. Few labeled target data are tested based on each emotion model of the source subject to get the subject list of the source domain. (b)Training three models based on each selected subject and the target subject. Three loss functions and six groups' dataset are designed to get a domain adaption model for each selected source subject. (c) Distilling all classifiers for classifying the target emotion. In general, the main purpose of the proposed method, which originates from the Meta-learning, is to find a feature representation that is broadly suitable for the target subject and source subject with limited labels. The proposed method can be applied to all deep learning oriented models. In order to evaluate the performance of the proposed method, extensive experiments are carried out on SEED and DEAP datasets, which are public datasets. It is found that with a small amount of target data, the proposed FLADA model outperforms the state-of-art methods in terms of accuracy and AUC-ROC. All codes generated in this article are available at github: https://github.com/heibaipei/FLADA.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Cross-subject EEG-based Emotion Recognition Using Adversarial Domain Adaption with Attention Mechanism
    Ye, Yalan
    Zhu, Xin
    Li, Yunxia
    Pan, Tongjie
    He, Wenwen
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 1140 - 1144
  • [2] Adversarial Discriminative Domain Adaptation and Transformers for EEG-based Cross-Subject Emotion Recognition
    Sartipi, Shadi
    Cetin, Mujdat
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [3] DA-CapsNet: A multi-branch capsule network based on adversarial domain adaption for cross-subject EEG emotion recognition
    Liu, Shuaiqi
    Wang, Zeyao
    An, Yanling
    Li, Bing
    Wang, Xinrui
    Zhang, Yudong
    KNOWLEDGE-BASED SYSTEMS, 2024, 283
  • [4] DA-CapsNet: A multi-branch capsule network based on adversarial domain adaption for cross-subject EEG emotion recognition
    Liu, Shuaiqi
    Wang, Zeyao
    An, Yanling
    Li, Bing
    Wang, Xinrui
    Zhang, Yudong
    Knowledge-Based Systems, 2024, 283
  • [5] Cross-subject and Cross-gender Emotion Classification from EEG
    Zhu, Jia-Yi
    Zheng, Wei-Long
    Lu, Bao-Liang
    WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, 2015, VOLS 1 AND 2, 2015, 51 : 1188 - 1191
  • [6] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [7] Cross-Subject EEG-Based Emotion Recognition with Deep Domain Confusion
    Zhang, Weiwei
    Wang, Fei
    Jiang, Yang
    Xu, Zongfeng
    Wu, Shichao
    Zhang, Yahui
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT I, 2019, 11740 : 558 - 570
  • [8] JOINT TEMPORAL CONVOLUTIONAL NETWORKS AND ADVERSARIAL DISCRIMINATIVE DOMAIN ADAPTATION FOR EEG-BASED CROSS-SUBJECT EMOTION RECOGNITION
    He, Zhipeng
    Zhong, Yongshi
    Pan, Jiahui
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 3214 - 3218
  • [9] Cross-Subject Emotion Recognition Based on Domain Similarity of EEG Signal Transfer Learning
    Ma, Yuliang
    Zhao, Weicheng
    Meng, Ming
    Zhang, Qizhong
    She, Qingshan
    Zhang, Jianhai
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 936 - 943
  • [10] Generalized Contrastive Partial Label Learning for Cross-Subject EEG-Based Emotion Recognition
    Li, Wei
    Fan, Lingmin
    Shao, Shitong
    Song, Aiguo
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 11