Intermittency in amplitude modulated dynamic atomic force microscopy

被引:4
|
作者
Jamitzky, Ferdinand [3 ]
Stark, Robert W. [1 ,2 ]
机构
[1] Univ Munich, Ctr Nanosci, D-80333 Munich, Germany
[2] Univ Munich, Dept Earth & Environm Sci, D-80333 Munich, Germany
[3] Leibniz Supercomp Ctr, Garching, Germany
关键词
Atomic force microscope; Chaos; Intermittency; Dynamic mode; SAMPLE INTERACTION; HIGHER-HARMONICS; VIBRATING TIP; SURFACE; OSCILLATOR; TRANSITION; TURBULENCE; SYSTEMS; CHAOS;
D O I
10.1016/j.ultramic.2010.02.021
中图分类号
TH742 [显微镜];
学科分类号
摘要
From a mathematical point of view, the atomic force microscope (AFM) belongs to a special class of continuous time dynamical systems with intermittent impact collisions. Discontinuities of the velocity result from the collisions of the tip with the surface. Transition to chaos in non-linear systems can occur via the following four routes: bifurcation cascade, crisis, quasi-periodicity, and intermittency. For the AFM period doubling and period-adding cascades are well established. Other routes into chaos, however, also may play an important role. Time series data of a dynamic AFM experiment indicates a chaotic mode that is related to the intermittency route into chaos. The observed intermittency is characterized as a type Ill intermittency. Understanding the dynamics of the system will help improve the overall system performance by keeping the operation parameters of dynamic AFM in a range, where chaos can be avoided or at least controlled. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:618 / 621
页数:4
相关论文
共 50 条
  • [31] Electric charging and nanostructure formation in polymeric films using combined amplitude-modulated atomic force microscopy-assisted electrostatic nanolithography and electric force microscopy
    Reagan, Michael A.
    Kashyn, Dmytro
    Juhl, Shane
    Vaia, Richard A.
    Lyuksyutov, Sergei F.
    [J]. APPLIED PHYSICS LETTERS, 2008, 93 (03)
  • [32] Energy dissipation distributions and dissipative atomic processes in amplitude modulation atomic force microscopy
    Santos, Sergio
    Gadelrab, Karim R.
    Silvernail, Adam
    Armstrong, Peter
    Stefancich, Marco
    Chiesa, Matteo
    [J]. NANOTECHNOLOGY, 2012, 23 (12)
  • [33] Atomic force microscopy force-distance curves with small amplitude ultrasonic modulation
    Ma, Chengfu
    Chen, Yuhang
    Wang, Tian
    Chu, Jiaru
    [J]. SCANNING, 2015, 37 (04) : 284 - 293
  • [34] On the origin of amplitude reduction mechanism in tapping mode atomic force microscopy
    Keyvani, Aliasghar
    Sadeghian, Hamed
    Goosen, Hans
    van Keulen, Fred
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (16)
  • [35] Linear and nonlinear approaches towards amplitude modulation atomic force microscopy
    Delnavaz, Aidin
    Mahmoodi, S. Nima
    Jalili, Nader
    Zohoor, Hassan
    [J]. CURRENT APPLIED PHYSICS, 2010, 10 (06) : 1416 - 1421
  • [36] Linearity of amplitude and phase in tapping-mode atomic force microscopy
    Salapaka, MV
    Chen, DJ
    Cleveland, JP
    [J]. PHYSICAL REVIEW B, 2000, 61 (02): : 1106 - 1115
  • [37] A review of demodulation techniques for amplitude-modulation atomic force microscopy
    Ruppert, Michael G.
    Harcombe, David M.
    Ragazzon, Michael R. P.
    Moheimani, S. O. Reza
    Fleming, Andrew J.
    [J]. BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 : 1407 - 1426
  • [38] Microcantilevers with embedded accelerometers for dynamic atomic force microscopy
    Shaik, Nurul Huda
    Reifenberger, Ronald G.
    Raman, Arvind
    [J]. APPLIED PHYSICS LETTERS, 2014, 104 (08)
  • [39] Amplitude modulation atomic force microscopy based on higher flexural modes
    Zhou, Xilong
    Zhuo, Rongshu
    Wen, Pengfei
    Li, Faxin
    [J]. AIP ADVANCES, 2017, 7 (12):
  • [40] Analysis of amplitude modulation atomic force microscopy in aqueous salt solutions
    Karayaylali, Pinar
    Baykara, Mehmet Z.
    [J]. APPLIED SURFACE SCIENCE, 2014, 318 : 137 - 141