Achieving arbitrarily large decay in the damped wave equation

被引:23
|
作者
Castro, C [1 ]
Cox, SJ
机构
[1] Univ Politecn Madrid, ETSI Caminos Canales & Puertos, Dept Matemat & Informat Aplicadas Ingn Civil, E-28006 Madrid, Spain
[2] Rice Univ, Dept Computat & Appl Math, Houston, TX 77005 USA
关键词
damped wave equation; decay rate;
D O I
10.1137/S0363012900370971
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We exhibit a sequence of viscous dampings for the fixed string that yields arbitrarily fast attenuation of any and all initial disturbances. The limit case produces extinction of all solutions in finite time.
引用
收藏
页码:1748 / 1755
页数:8
相关论文
共 50 条
  • [31] Decay for the Kelvin-Voigt damped wave equation: Piecewise smooth damping
    Burq, Nicolas
    Sun, Chenmin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (01): : 446 - 483
  • [32] Decay Estimate and Blow-up for a Damped Wave Equation with Supercritical Sources
    Ge Zu
    Bin Guo
    Wenjie Gao
    Acta Applicandae Mathematicae, 2022, 177
  • [33] Decay of approximate solutions for the damped semilinear wave equation on a bounded id domain
    Amadori, Debora
    Aqel, Fatima Al-Zahra'
    Dal Santo, Edda
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 166 - 206
  • [34] Decay for solutions of a nonlinear damped wave equation with variable-exponent nonlinearities
    Messaoudi, Salim A.
    Al-Smail, Jamal H.
    Talahmeh, Ala A.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (08) : 1863 - 1875
  • [35] Sharp Decay Rate for the Damped Wave Equation With Convex-Shaped Damping
    Sun, Chenmin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (07) : 5905 - 5973
  • [36] ONE-DIMENSIONAL DAMPED WAVE EQUATION WITH LARGE INITIAL PERTURBATION
    Fan, Lili
    Liu, Hongxia
    Zhao, Huijiang
    ANALYSIS AND APPLICATIONS, 2013, 11 (04)
  • [37] A remark on the damped wave equation
    Pata, V
    Zelik, S
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (03) : 609 - 614
  • [38] On the linear damped wave equation
    LopezGomez, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1997, 134 (01) : 26 - 45
  • [39] On the strongly damped wave equation
    Pata, V
    Squassina, M
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 253 (03) : 511 - 533
  • [40] On the Homogenization of a Damped Wave Equation
    Timofte, C.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 543 - 550