Decay Estimate and Blow-up for a Damped Wave Equation with Supercritical Sources

被引:0
|
作者
Ge Zu
Bin Guo
Wenjie Gao
机构
[1] Jilin University,School of Mathematics
来源
关键词
Damped wave equations; High energy; Energy estimate;
D O I
暂无
中图分类号
学科分类号
摘要
This article deals with an initial and boundary value problem to the following damped wave equation: utt−Δu−ωΔut+μut=|u|p−2u\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ u_{tt}-\Delta u-\omega \Delta u_{t}+\mu u_{t}=|u|^{p-2}u $$\end{document} in a bounded domain. An energy decay estimate for the solutions when ω≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\omega \geq 0$\end{document} and μ>−ωλ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mu >-\omega \lambda _{1}$\end{document} is obtained by adopting a new method, where λ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\lambda _{1}$\end{document} is the first eigenvalue of the operator −Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-\Delta $\end{document} under the homogeneous Dirichlet boundary conditions. Moreover, a blow-up result is proved for solutions with high energy initial data. An estimate of the upper bounded for the lifespan of the solution is showed as well. These results give some answers to the open problems in Gazzola and Squassina (Ann. Inst. Henri Poincaré 23:185–207, 2006).
引用
收藏
相关论文
共 50 条
  • [1] Decay Estimate and Blow-up for a Damped Wave Equation with Supercritical Sources
    Zu, Ge
    Guo, Bin
    Gao, Wenjie
    [J]. ACTA APPLICANDAE MATHEMATICAE, 2022, 177 (01)
  • [2] Nonlinear damped wave equation: Existence and blow-up
    Messaoudi, Salim A.
    Talahmeh, Ala A.
    Al-Smail, Jamal H.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (12) : 3024 - 3041
  • [3] Existence and blow-up of a new class of nonlinear damped wave equation
    Tebba, Zakia
    Boulaaras, Salah
    Degaichia, Hakima
    Allahem, Ali
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (03) : 2649 - 2660
  • [4] A lower bound for the blow-up time to a damped semilinear wave equation
    Sun, Lili
    Guo, Bin
    Gao, Wenjie
    [J]. APPLIED MATHEMATICS LETTERS, 2014, 37 : 22 - 25
  • [5] Blow-up of solutions for the damped Boussinesq equation
    Polat, N
    Kaya, D
    Tutalar, HI
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (07): : 473 - 476
  • [6] Exponential decay and blow-up results for a viscoelastic equation with variable sources
    Le, Nhan Cong
    Le, Truong Xuan
    Nguyen, Y. Van
    [J]. APPLICABLE ANALYSIS, 2023, 102 (03) : 782 - 799
  • [7] Blow-up of solutions to systems of nonlinear wave equations with supercritical sources
    Guo, Yanqiu
    Rammaha, Mohammad A.
    [J]. APPLICABLE ANALYSIS, 2013, 92 (06) : 1101 - 1115
  • [8] Blow-up and lifespan estimate to a nonlinear wave equation in Schwarzschild spacetime
    Lai, Ning-An
    Zhou, Yi
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 173 : 172 - 194
  • [9] Energy decay estimates and infinite blow-up phenomena for a strongly damped semilinear wave equation with logarithmic nonlinear source
    Ma, Lingwei
    Fang, Zhong Bo
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (07) : 2639 - 2653
  • [10] Blow up in a nonlinearly damped wave equation
    Messaoudi, SA
    [J]. MATHEMATISCHE NACHRICHTEN, 2001, 231 : 105 - 111