Multiple positive solutions for the Brezis-Nirenberg problem on the sphere SN

被引:0
|
作者
Stingelin, S [1 ]
机构
[1] Univ Basel, Math Inst, CH-4051 Basel, Switzerland
关键词
D O I
10.1142/9789812702067_0093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We look for two positive solutions of the Brezis-Nirenberg problem -Delta u-lambda u(q-1) = u(2*-1) in bounded domains on the sphere S-n, with 1 < q < 2 and 2* the critical Sobolev exponent. The first solution will be found as a minimizer of a cutoff functional and the second as a critical point with the mountain pass theorem.
引用
收藏
页码:558 / 560
页数:3
相关论文
共 50 条
  • [1] MULTIPLE SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    Clapp, Monica
    Weth, Tobias
    [J]. ADVANCES IN DIFFERENTIAL EQUATIONS, 2005, 10 (04) : 463 - 480
  • [2] THE NUMBER OF POSITIVE SOLUTIONS TO THE BREZIS-NIRENBERG PROBLEM
    Cao, Daomin
    Luo, Peng
    Peng, Shuangjie
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (03) : 1947 - 1985
  • [3] New numerical solutions for the Brezis-Nirenberg problem on Sn
    Bandle, C
    Stingelin, S
    [J]. Elliptic and Parabolic Problems: A SPECIAL TRIBUTE TO THE WORK OF HAIM BREZIS, 2005, 63 : 13 - 21
  • [4] EXISTENCE OF SOLUTIONS FOR THE BREZIS-NIRENBERG PROBLEM
    De Paiva, Francisco O.
    Miyagaki, Olimpio H.
    Presoto, Adilson E.
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2023, 61 (02) : 651 - 659
  • [5] On the Brezis-Nirenberg Problem
    Schechter, M.
    Zou, Wenming
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (01) : 337 - 356
  • [6] SINGULAR SOLUTIONS OF THE BREZIS-NIRENBERG PROBLEM IN A BALL
    Flores, Isabel
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (02) : 673 - 682
  • [7] The Brezis-Nirenberg problem on S
    Bandle, C
    Benguria, R
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 178 (01) : 264 - 279
  • [8] On the generalised Brezis-Nirenberg problem
    Anoop, T., V
    Das, Ujjal
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 30 (01):
  • [9] Multiple solutions for the Brezis-Nirenberg problem with a Hardy potential and singular coefficients
    He, Xiaoming
    Zou, Wenming
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) : 1025 - 1031
  • [10] Multispike solutions for the Brezis-Nirenberg problem in dimension three
    Musso, Monica
    Salazar, Dora
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (11) : 6663 - 6709