Cyclic coverings of virtual link diagrams

被引:5
|
作者
Kamada, Naoko [1 ]
机构
[1] Nagoya City Univ, Grad Sch Nat Sci, Nagoya, Aichi, Japan
关键词
Knot; virtual knot; invariant; JONES POLYNOMIALS;
D O I
10.1142/S0129167X19500721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A virtual link diagram is called mod m almost. classical if it admits an Alexander numbering valued in integers modulo m, and a virtual link is called mod m almost classical if it has a mod m almost classical diagram as a representative. In this paper, we introduce a method of constructing a mod m almost. classical virtual link diagram from a given virtual link diagram, which we call an m-fold cyclic covering diagram. The main result is that m-fold cyclic covering diagrams obtained from two equivalent virtual link diagrams are equivalent. Thus, we have a well-defined map from the set of virtual links to the set of mod m almost classical virtual links. Some applications are also given.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Coherent double coverings of virtual link diagrams
    Kamada, Naoko
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (11)
  • [2] On minimal virtual link diagrams
    D. M. Afanasiev
    V. O. Manturov
    Doklady Mathematics, 2009, 79 : 301 - 304
  • [3] On minimal virtual link diagrams
    Afanasiev, D. M.
    Manturov, V. O.
    DOKLADY MATHEMATICS, 2009, 79 (03) : 301 - 304
  • [4] Abstract link diagrams and virtual knots
    Kamada, N
    Kamada, S
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2000, 9 (01) : 93 - 106
  • [5] Checkerboard framings and states of virtual link diagrams
    Dye, Heather A.
    KNOTS, LINKS, SPATIAL GRAPHS, AND ALGEBRAIC INVARIANTS, 2017, 689 : 53 - 64
  • [6] converting virtual link diagrams to normal ones
    Kamada, Naoko
    TOPOLOGY AND ITS APPLICATIONS, 2017, 230 : 161 - 171
  • [7] A POLYNOMIAL INVARIANT OF VIRTUAL MAGNETIC LINK DIAGRAMS
    Im, Young Ho
    Kim, Sera
    Park, Kyoung Il
    OSAKA JOURNAL OF MATHEMATICS, 2011, 48 (04) : 1095 - 1114
  • [8] Non-trivial realizations of virtual link diagrams
    Dye, H. A.
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2006, 15 (08) : 963 - 981
  • [9] Twistor coverings and Feynman diagrams
    Faizan Bhat
    Rajesh Gopakumar
    Pronobesh Maity
    Bharathkumar Radhakrishnan
    Journal of High Energy Physics, 2022
  • [10] Twistor coverings and Feynman diagrams
    Bhat, Faizan
    Gopakumar, Rajesh
    Maity, Pronobesh
    Radhakrishnan, Bharathkumar
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (05)