Cyclic coverings of virtual link diagrams

被引:5
|
作者
Kamada, Naoko [1 ]
机构
[1] Nagoya City Univ, Grad Sch Nat Sci, Nagoya, Aichi, Japan
关键词
Knot; virtual knot; invariant; JONES POLYNOMIALS;
D O I
10.1142/S0129167X19500721
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A virtual link diagram is called mod m almost. classical if it admits an Alexander numbering valued in integers modulo m, and a virtual link is called mod m almost classical if it has a mod m almost classical diagram as a representative. In this paper, we introduce a method of constructing a mod m almost. classical virtual link diagram from a given virtual link diagram, which we call an m-fold cyclic covering diagram. The main result is that m-fold cyclic covering diagrams obtained from two equivalent virtual link diagrams are equivalent. Thus, we have a well-defined map from the set of virtual links to the set of mod m almost classical virtual links. Some applications are also given.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] CYCLIC COVERINGS - DEFORMATION AND TORELLI THEOREM
    WEHLER, J
    MATHEMATISCHE ANNALEN, 1986, 274 (03) : 443 - 472
  • [32] Cyclic and Abelian coverings of real varieties
    Catanese, Fabrizio
    Loenne, Michael
    Perroni, Fabio
    MATHEMATISCHE ANNALEN, 2023, 386 (3-4) : 1799 - 1827
  • [33] Aubry Set on Infinite Cyclic Coverings
    Fathi, Albert
    Pageault, Pierre
    REGULAR & CHAOTIC DYNAMICS, 2023, 28 (04): : 425 - 446
  • [34] Cyclic branched coverings of lens spaces
    Vesnin A.Y.
    Kozlovskaya T.A.
    Siberian Mathematical Journal, 2011, 52 (3) : 426 - 435
  • [35] On cyclic branched coverings of torus knots
    Cavicchioli A.
    Hegenbarth F.
    Kim A.C.
    Journal of Geometry, 1999, 64 (1-2) : 55 - 66
  • [36] CYCLIC BRANCHED COVERINGS OF LENS SPACES
    Vesnin, A. Yu
    Kozlovskaya, T. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2011, 52 (03) : 426 - 435
  • [37] A theory of genera for cyclic coverings of links
    Morishita, M
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2001, 77 (07) : 115 - 118
  • [38] Monodromy of cyclic coverings of the projective line
    Venkataramana, T. N.
    INVENTIONES MATHEMATICAE, 2014, 197 (01) : 1 - 45
  • [39] COVERINGS, COMPOSITES AND CABLES OF VIRTUAL STRINGS
    Gibson, Andrew
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (08) : 1173 - 1215
  • [40] Virtual braids and virtual curve diagrams
    Chterental, Oleg
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2015, 24 (13)