Twistor coverings and Feynman diagrams

被引:6
|
作者
Bhat, Faizan [1 ]
Gopakumar, Rajesh [2 ]
Maity, Pronobesh [2 ]
Radhakrishnan, Bharathkumar [3 ]
机构
[1] Indian Inst Sci, Ctr High Energy Phys, CV Raman Ave, Bangalore 560012, Karnataka, India
[2] Int Ctr Theoret Sci TIFR, Hesaraghatta Hobli 560089, Bengaluru North, India
[3] Univ Geneva, Dept Phys Theor, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
关键词
AdS-CFT Correspondence; Conformal Field Models in String Theory;
D O I
10.1007/JHEP05(2022)150
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Recently, a worldsheet dual to free N = 4 Super Yang-Mills has been proposed in terms of twistor variables for AdS(5), in parallel to that for the AdS(3) dual to the free symmetric orbifold CFT. In the latter case, holomorphic covering maps play a central role in determining correlators and are associated to Feynman diagrams. After recasting these maps in terms of the worldsheet twistor variables for AdS(3), we generalise to AdS(5). We propose stringy incidence relations and appropriate reality conditions for the twistor covering maps. For some special kinematic configurations of correlators, we exhibit an explicit construction of the corresponding covering map. We find that the closed string worldsheet corresponding to this map is related to a gauge theory Feynman diagram by the Strebel construction, as for AdS(3)/CFT2. Rather strikingly, the regularised Strebel area of the worldsheet reproduces the Feynman propagator of the free field theory.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Twistor coverings and Feynman diagrams
    Faizan Bhat
    Rajesh Gopakumar
    Pronobesh Maity
    Bharathkumar Radhakrishnan
    [J]. Journal of High Energy Physics, 2022
  • [2] TWISTOR DIAGRAMS
    HODGES, A
    [J]. PHYSICA A, 1982, 114 (1-3): : 157 - 175
  • [3] STOCHASTIC DIAGRAMS AND FEYNMAN DIAGRAMS
    HUFFEL, H
    LANDSHOFF, PV
    [J]. NUCLEAR PHYSICS B, 1985, 260 (3-4) : 545 - 568
  • [4] FEYNMAN DIAGRAMS WITHOUT FEYNMAN PARAMETERS
    MENDELS, E
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A-NUCLEI PARTICLES AND FIELDS, 1978, 45 (01): : 87 - 122
  • [5] On parallel composition of twistor diagrams
    Müller, F
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2003, 459 (2030): : 287 - 308
  • [6] Sequential composition of twistor diagrams
    Huggett, S
    Müller, F
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1999, 455 (1985): : 1599 - 1614
  • [7] Symbology of Feynman integrals from twistor geometries
    Song He
    Jiahao Liu
    Yichao Tang
    Qinglin Yang
    [J]. Science China Physics, Mechanics & Astronomy, 2024, 67
  • [8] Symbology of Feynman integrals from twistor geometries
    Song He
    Jiahao Liu
    Yichao Tang
    Qinglin Yang
    [J]. Science China(Physics,Mechanics & Astronomy), 2024, Mechanics & Astronomy) (03) : 48 - 63
  • [9] DECOMPOSITION OF FEYNMAN DIAGRAMS
    CHANG, CK
    GLEESON, AM
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (01): : 28 - 28
  • [10] Symbology of Feynman integrals from twistor geometries
    He, Song
    Liu, Jiahao
    Tang, Yichao
    Yang, Qinglin
    [J]. SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2024, 67 (03)