MONOTONICITY AND ASYMPTOTICS OF ZEROS OF LAGUERRE-SOBOLEV-TYPE ORTHOGONAL POLYNOMIALS OF HIGHER ORDER DERIVATIVES

被引:7
|
作者
Marcellan, Francisco [1 ]
Rafaeli, Fernando R.
机构
[1] Univ Carlos III Madrid, Dept Matemat, Escuela Politecn Super, Leganes 28911, Spain
基金
巴西圣保罗研究基金会;
关键词
Laguerre orthogonal polynomials; Laguerre-Sobolev-type orthogonal polynomials; zeros; interlacing; monotonicity; asymptotics;
D O I
10.1090/S0002-9939-2011-10806-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we analyze the location of the zeros of polynomials orthogonal with respect to the inner product (0.1) < p,q > = integral(infinity)(0) p(x)q(s)x(alpha)e(-x)dx + Np((j))(0)q((j))(0), where alpha > -1, N >= 0, and j is an element of N. In particular, we focus our attention on their interlacing properties with respect to the zeros of Laguerre polynomials as well as on the monotonicity of each individual zero in terms of the mass N. Finally, we give necessary and sufficient conditions in terms of N in order for the least zero of any Laguerre-Sobolev-type orthogonal polynomial to be negative.
引用
收藏
页码:3929 / 3936
页数:8
相关论文
共 50 条
  • [21] A new approach to the asymptotics of Sobolev type orthogonal polynomials
    Alfaro, M.
    Moreno-Balcazar, J. J.
    Pena, A.
    Rezola, M. L.
    JOURNAL OF APPROXIMATION THEORY, 2011, 163 (04) : 460 - 480
  • [22] Varying discrete Laguerre-Sobolev orthogonal polynomials: Asymptotic behavior and zeros
    Manas-Manas, Juan F.
    Marcellan, Francisco
    Moreno-Balcazar, Juan J.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 222 : 612 - 618
  • [23] Laguerre-Sobolev orthogonal polynomials
    Marcellan, F
    Perez, TE
    Pinar, MA
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 71 (02) : 245 - 265
  • [24] Electrostatic Models for Zeros of Laguerre–Sobolev Polynomials
    Abel Díaz-González
    Héctor Pijeira-Cabrera
    Javier Quintero-Roba
    Mediterranean Journal of Mathematics, 2024, 21 (7)
  • [25] Asymptotic properties of Laguerre-Sobolev type orthogonal polynomials
    Duenas, Herbert
    Huertas, Edmundo J.
    Marcellan, Francisco
    NUMERICAL ALGORITHMS, 2012, 60 (01) : 51 - 73
  • [26] Asymptotics and bounds for the zeros of Laguerre polynomials: a survey
    Gatteschi, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 144 (1-2) : 7 - 27
  • [27] Asymptotics for orthogonal polynomials and separation of their zeros
    Levin, Eli
    Lubinsky, D. S.
    JOURNAL OF APPROXIMATION THEORY, 2022, 281
  • [28] ASYMPTOTICS FOR THE GREATEST ZEROS OF ORTHOGONAL POLYNOMIALS
    MATE, A
    NEVAI, P
    TOTIK, V
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1986, 17 (03) : 745 - 751
  • [29] Strong asymptotics for Sobolev orthogonal polynomials
    Andrei Martínez Finkelshtein
    Héctor Pijeira Cabrera
    Journal d’Analyse Mathématique, 1999, 78 : 143 - 156
  • [30] Sobolev orthogonal polynomials:: Balance and asymptotics
    Alfaro, Manuel
    Jose Moreno-Balcazar, Juan
    Pena, Ana
    Luisa Rezola, M.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (01) : 547 - 560