Propagation in a Fractional Reaction-Diffusion Equation in a Periodically Hostile Environment

被引:2
|
作者
Leculier, Alexis [1 ]
Mirrahimi, Sepideh [2 ]
Roquejoffre, Jean-Michel [1 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, UMR 5219, 118 Route Narbonne, F-31062 Toulouse 4, France
[2] Univ Toulouse, Inst Math Toulouse, UMR 5219, CNRS,UPS IMT, F-31062 Toulouse 9, France
基金
欧洲研究理事会;
关键词
Non-local fractional operator; Fisher KPP; Asymptotic analysis; Exponential speed of propagation; Perturbed test function; LAPLACIAN; REGULARITY; LIMIT; MODEL;
D O I
10.1007/s10884-020-09837-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We provide an asymptotic analysis of a fractional Fisher-KPP type equation in periodic non-connected media with Dirichlet conditions outside the domain. After showing the existence and uniqueness of a non-trivial bounded stationary state n(+), we prove that it invades the unstable state zero exponentially fast in time.
引用
收藏
页码:863 / 890
页数:28
相关论文
共 50 条
  • [31] Barycentric rational collocation method for fractional reaction-diffusion equation
    Li, Jin
    AIMS MATHEMATICS, 2023, 8 (04): : 9009 - 9026
  • [32] Hopping transport in hostile reaction-diffusion systems
    Missel, Andrew R.
    Dahmen, Karin A.
    PHYSICAL REVIEW E, 2009, 79 (02)
  • [33] Asymptotic speed of wave propagation for a discrete reaction-diffusion equation
    Liu X.-X.
    Weng P.-X.
    Acta Mathematicae Applicatae Sinica, 2006, 22 (3) : 369 - 386
  • [34] Fractional reaction-diffusion equations
    Saxena, R. K.
    Mathai, A. M.
    Haubold, H. J.
    ASTROPHYSICS AND SPACE SCIENCE, 2006, 305 (03) : 289 - 296
  • [35] Fractional Reaction-Diffusion Equations
    R. K. Saxena
    A. M. Mathai
    H. J. Haubold
    Astrophysics and Space Science, 2006, 305 : 289 - 296
  • [36] A Numerical Method for Time-Fractional Reaction-Diffusion and Integro Reaction-Diffusion Equation Based on Quasi-Wavelet
    Kumar, Sachin
    Cao, Jinde
    Li, Xiaodi
    COMPLEXITY, 2020, 2020
  • [37] Continuity of the Unbounded Attractors for a Fractional Perturbation of a Scalar Reaction-Diffusion Equation
    Belluzi, Maykel
    Bortolan, Matheus C.
    Castro, Ubirajara
    Fernandes, Juliana
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024,
  • [38] Numerical solution of the time fractional reaction-diffusion equation with a moving boundary
    Zheng, Minling
    Liu, Fawang
    Liu, Qingxia
    Burrage, Kevin
    Simpson, Matthew J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 338 : 493 - 510
  • [39] A class of efficient difference method for time fractional reaction-diffusion equation
    Zhang, Junxia
    Yang, Xiaozhong
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 4376 - 4396
  • [40] On an accurate discretization of a variable-order fractional reaction-diffusion equation
    Hajipour, Mojtaba
    Jajarmi, Amin
    Baleanu, Dumitru
    Sun, HongGuang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 69 : 119 - 133