Deformations of filiform Lie algebras and superalgebras

被引:14
|
作者
Khakimdjanov, Yu. [2 ]
Navarro, R. M. [1 ]
机构
[1] Univ Extremadura, Dpto Matemat, Caceres, Spain
[2] Univ Haute Alsace, Lab Math & Applicat, Mulhouse, France
关键词
Lie algebras; Lie superalgebras; Cohomology; Deformation; Nilpotent; Filiform; COHOMOLOGY;
D O I
10.1016/j.geomphys.2010.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give the dimension and an algorithm to compute a basis of all the infinitesimal deformations of L-n on the variety of (n + 1)-dimensional Lie algebra laws Ln+1. Recall that every filiform Lie algebra can be obtained by a deformation of L-n [Vergne (1970) [1]]. In the same way as filiform Lie algebras, all filiform Lie superalgebras can be obtained by infinitesimal deformations of the model Lie superalgebra L-n.m. In this paper we will also study the infinitesimal deformations of L-n.m which lie in Hom(L-n Lambda L-n, L-n), giving the dimension and an algorithm to compute a basis of them. One could think that the two sets of deformations aforementioned, one for Lie algebras and another for Lie superalgebras, can be the same. But this assumption is not correct, in particular we will prove that the set of deformations for Lie superalgebras is a strict subset of the set of deformations for Lie algebras. Thus, we will give a necessary and sufficient condition for a cocycle of the Lie algebra L-n to be a cocycle of the Lie superalgebra L-n.m. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1156 / 1169
页数:14
相关论文
共 50 条
  • [41] Integrable deformations of nilpotent color Lie superalgebras
    Khakimdjanov, Yu.
    Navarro, R. M.
    JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (10) : 1797 - 1808
  • [42] Quasi Qn-Filiform Lie Algebras
    Ren, Bin
    Zhu, Linsheng
    ALGEBRA COLLOQUIUM, 2011, 18 (01) : 139 - 154
  • [43] Low-dimensional filiform Lie algebras
    Gomez, JR
    Jimenez-Merchan, A
    Khakimdjanov, Y
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 130 (02) : 133 - 158
  • [44] Quasi Ln-filiform Lie algebras
    Ren, B
    Hu, NH
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (02) : 633 - 648
  • [45] The cohomology of filiform Lie algebras of maximal rank
    Cagliero, Leandro
    Tirao, Paulo
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 455 : 143 - 167
  • [46] On certain graded representations of filiform Lie algebras
    Bernik, Janez
    Sivic, Klemen
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (11): : 2305 - 2327
  • [47] FILIFORM LIE ALGEBRAS OF DIMENSION 8 AS DEGENERATIONS
    Felipe Herrera-Granada, Joan
    Tirao, Paulo
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (04)
  • [48] Filiform N-graded Lie algebras
    Millionshchikov, DV
    RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (02) : 422 - 424
  • [49] Degenerations to filiform Lie algebras of dimension 9
    Herrera-Granada, Joan Felipe
    Marquez, Oscar
    Vera, Sonia
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (02) : 836 - 847
  • [50] CLASSIFICATION OF FILIFORM SOLVABLE LIE-ALGEBRAS
    SUND, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 317 (02): : 145 - 148