Deformations of filiform Lie algebras and superalgebras

被引:14
|
作者
Khakimdjanov, Yu. [2 ]
Navarro, R. M. [1 ]
机构
[1] Univ Extremadura, Dpto Matemat, Caceres, Spain
[2] Univ Haute Alsace, Lab Math & Applicat, Mulhouse, France
关键词
Lie algebras; Lie superalgebras; Cohomology; Deformation; Nilpotent; Filiform; COHOMOLOGY;
D O I
10.1016/j.geomphys.2010.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give the dimension and an algorithm to compute a basis of all the infinitesimal deformations of L-n on the variety of (n + 1)-dimensional Lie algebra laws Ln+1. Recall that every filiform Lie algebra can be obtained by a deformation of L-n [Vergne (1970) [1]]. In the same way as filiform Lie algebras, all filiform Lie superalgebras can be obtained by infinitesimal deformations of the model Lie superalgebra L-n.m. In this paper we will also study the infinitesimal deformations of L-n.m which lie in Hom(L-n Lambda L-n, L-n), giving the dimension and an algorithm to compute a basis of them. One could think that the two sets of deformations aforementioned, one for Lie algebras and another for Lie superalgebras, can be the same. But this assumption is not correct, in particular we will prove that the set of deformations for Lie superalgebras is a strict subset of the set of deformations for Lie algebras. Thus, we will give a necessary and sufficient condition for a cocycle of the Lie algebra L-n to be a cocycle of the Lie superalgebra L-n.m. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1156 / 1169
页数:14
相关论文
共 50 条
  • [21] Group Gradings on Filiform Lie Algebras
    Bahturin, Yuri
    Goze, Michel
    Remm, Elisabeth
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (01) : 40 - 62
  • [22] A method to integrate filiform Lie algebras
    Benjumea, J. C.
    Echarte, F. J.
    Nunez, J.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2006, 12 (02): : 179 - 192
  • [23] Quasi Rn filiform Lie algebras
    Wu, Mingzhong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (05) : 1203 - 1220
  • [24] Graded contractions of filiform Lie algebras
    Escobar, Jose M.
    Nunez Valdes, Juan
    Perez-Fernandez, Pedro
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (17) : 7195 - 7201
  • [25] Classifying filiform Lie algebras with Mathematica
    Gomez, JR
    JimenezMerchan, A
    Khakimdjanov, Y
    INNOVATION IN MATHEMATICS, 1997, : 169 - 176
  • [26] On deformations of the filiform Lie superalgebra Ln,m
    Gilg, M
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (06) : 2099 - 2115
  • [27] Leibniz algebras associated with representations of filiform Lie algebras
    Ayupov, Sh. A.
    Camacho, L. M.
    Khudoyberdiyev, A. Kh.
    Omirov, B. A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2015, 98 : 181 - 195
  • [28] Local Automorphisms and Local Superderivations of Model Filiform Lie Superalgebras
    Sheng, Yuqiu
    Liu, Wende
    Liu, Yang
    JOURNAL OF MATHEMATICS, 2024, 2024
  • [29] CONSTRUCTION OF LIE-ALGEBRAS AND LIE SUPERALGEBRAS FROM TERNARY ALGEBRAS
    BARS, I
    GUNAYDIN, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (09) : 1977 - 1993
  • [30] Quadratic symplectic Lie superalgebras with a filiform module as an odd part
    Barreiro, Elisabete
    Benayadi, Said
    Navarro, Rosa M.
    Sanchez, Jose M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (04)