Prediction of Cutting Force in End Milling of Glass Fiber Reinforced Polymer (GFRP) Composites Using Adaptive Neuro Fuzzy Inference System (ANFIS)

被引:2
|
作者
Effendi, Mohammad Khoirul [1 ]
Soepangkat, Bobby Oedy Pramoedyo [1 ]
Suhardjono [1 ]
Norcahyo, Rachmadi [1 ]
Sutikno [1 ]
Sampurno [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Mech Engn, Surabaya 60111, Indonesia
关键词
DELAMINATION;
D O I
10.1063/1.5138311
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The anisotropic and heterogeneous properties of glass fiber-reinforced plastic (GFRP) composites lead to a challenging machining process. The end milling process of these materials generates excessive cutting force that leads to several undesirable damages such as high surface roughness and delamination. Therefore, it is necessary to model the cutting force during the end milling process of GFRP composites materials to obtain an accurate prediction of cutting force. End milling process parameters, i.e., depth of cut (A(a)), feeding speed (V-f), and spindle speed (n) are used as an input parameter and each has three levels. Hence, a randomized full factorial 3 x 3 x 3 is applied as the design of experiments. On the other hand, the cutting force (F-c) was used as an output parameter. In this study, an adaptive network-based fuzzy inference system (ANFIS) method is applied to model the cutting force during the end milling process of GFRP composites.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Comparisons of Tidal Prediction Analysis by Using Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN)
    Hendri, Andy
    Suprayogi, Imam
    Zulfakar, Muhamad
    Ongko, Andarsin
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ARTIFICIAL INTELLIGENCE (CSAI 2017), 2017, : 164 - 168
  • [32] Spring rainfall prediction based on remote linkage controlling using adaptive neuro-fuzzy inference system (ANFIS)
    Gholam Abbas Fallah-Ghalhary
    Majid Habibi-Nokhandan
    Mohammad Mousavi-Baygi
    Javad Khoshhal
    Akbar Shaemi Barzoki
    Theoretical and Applied Climatology, 2010, 101 : 217 - 233
  • [33] Design and modeling an Adaptive Neuro-Fuzzy Inference System (ANFIS) for the prediction of a security index in VANET
    Bensaber, Boucif Amar
    Diaz, Caroly Gabriela Pereira
    Lahrouni, Youssef
    JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 47 (47)
  • [34] Estimation of subsurface strata of earth using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Y. Srinivas
    A. Stanley Raj
    D. Hudson Oliver
    D. Muthuraj
    N. Chandrasekar
    Acta Geodaetica et Geophysica Hungarica, 2012, 47 : 78 - 89
  • [35] Ladder Heat Sink Design Using Adaptive Neuro- Fuzzy Inference System (ANFIS)
    Bataineh, Ahmad
    Batayneh, Wafa
    Al-Smadi, Ahmad
    Bataineh, Baian
    JORDAN JOURNAL OF MECHANICAL AND INDUSTRIAL ENGINEERING, 2019, 13 (01): : 27 - 36
  • [36] The State of Charge Estimation for Rechargeable batteries Using Adaptive Neuro Fuzzy Inference System (ANFIS)
    Fekry, Hesham M.
    Hassan, M. A. Moustafa
    Abd El Aziz, M. M.
    2012 FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE ENGINEERING SYSTEMS (ICIES), 2012, : 201 - 206
  • [37] Optimization of Photosynthetic Rate Parameters using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Valenzuela, Ira C.
    Baldovino, Renann G.
    Bandala, Argel A.
    Dadios, Elmer P.
    2017 INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), 2017, : 129 - 134
  • [38] Modeling of residential lighting load profile using adaptive neuro fuzzy inference system (ANFIS)
    Popoola, O. M.
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2016, 13 (14) : 1473 - 1482
  • [39] Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    Mohandes, M.
    Rehman, S.
    Rahman, S. M.
    APPLIED ENERGY, 2011, 88 (11) : 4024 - 4032
  • [40] ESTIMATION OF SUBSURFACE STRATA OF EARTH USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Srinivas, Y.
    Raj, A. Stanley
    Oliver, D. Hudson
    Muthuraj, D.
    Chandrasekar, N.
    ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2012, 47 (01): : 78 - 89