Prediction of Cutting Force in End Milling of Glass Fiber Reinforced Polymer (GFRP) Composites Using Adaptive Neuro Fuzzy Inference System (ANFIS)

被引:2
|
作者
Effendi, Mohammad Khoirul [1 ]
Soepangkat, Bobby Oedy Pramoedyo [1 ]
Suhardjono [1 ]
Norcahyo, Rachmadi [1 ]
Sutikno [1 ]
Sampurno [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Dept Mech Engn, Surabaya 60111, Indonesia
关键词
DELAMINATION;
D O I
10.1063/1.5138311
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The anisotropic and heterogeneous properties of glass fiber-reinforced plastic (GFRP) composites lead to a challenging machining process. The end milling process of these materials generates excessive cutting force that leads to several undesirable damages such as high surface roughness and delamination. Therefore, it is necessary to model the cutting force during the end milling process of GFRP composites materials to obtain an accurate prediction of cutting force. End milling process parameters, i.e., depth of cut (A(a)), feeding speed (V-f), and spindle speed (n) are used as an input parameter and each has three levels. Hence, a randomized full factorial 3 x 3 x 3 is applied as the design of experiments. On the other hand, the cutting force (F-c) was used as an output parameter. In this study, an adaptive network-based fuzzy inference system (ANFIS) method is applied to model the cutting force during the end milling process of GFRP composites.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992
  • [22] Prediction of earthquake magnitude using adaptive neuro fuzzy inference system
    Amiya Pandit
    Kishore Chandra Biswal
    Earth Science Informatics, 2019, 12 : 513 - 524
  • [23] Modeling and analysis of force prediction in milling process of unidirectional fiber reinforced polymer composites
    Wang, Haijin
    Dong, Huiyue
    Ke, Yinglin
    Sun, Jie
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (9-12): : 3073 - 3080
  • [24] Prediction of earthquake magnitude using adaptive neuro fuzzy inference system
    Pandit, Amiya
    Biswal, Kishore Chandra
    EARTH SCIENCE INFORMATICS, 2019, 12 (04) : 513 - 524
  • [25] Modeling and analysis of force prediction in milling process of unidirectional fiber reinforced polymer composites
    Haijin Wang
    Huiyue Dong
    Yinglin Ke
    Jie Sun
    The International Journal of Advanced Manufacturing Technology, 2019, 101 : 3073 - 3080
  • [26] Seizure Prediction Using Adaptive Neuro-Fuzzy Inference System
    Rabbi, Ahmed F.
    Azinfar, Leila
    Fazel-Rezai, Reza
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 2100 - 2103
  • [27] Prediction of optimal mild steel weld parameters using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique
    Lofinmakin, Oladotun Oluyomi
    Sada, Samuel Oro-oghene
    Emovon, Ikuobase
    Samuel, Olusegun David
    Oke, Sunday Ayoola
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 131 (3-4): : 1203 - 1210
  • [28] Prediction of optimal mild steel weld parameters using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique
    Oladotun Oluyomi Lofinmakin
    Samuel Oro-oghene Sada
    Ikuobase Emovon
    Olusegun David Samuel
    Sunday Ayoola Oke
    The International Journal of Advanced Manufacturing Technology, 2024, 131 : 1203 - 1210
  • [29] TUNNEL DRIVAGE PERFORMANCE PREDICTION OF HYDRAULIC IMPACT HAMMERS USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Iphar, Melih
    10TH INTERNATIONAL MULTIDISCIPLINARY SCIENTIFIC GEOCONFERENCE: SGEM 2010, VOL I, 2010, : 611 - 618
  • [30] Spring rainfall prediction based on remote linkage controlling using adaptive neuro-fuzzy inference system (ANFIS)
    Fallah-Ghalhary, Gholam Abbas
    Habibi-Nokhandan, Majid
    Mousavi-Baygi, Mohammad
    Khoshhal, Javad
    Barzoki, Akbar Shaemi
    THEORETICAL AND APPLIED CLIMATOLOGY, 2010, 101 (1-2) : 217 - 233