Infilling of Rainfall Information using Genetic Programming

被引:10
|
作者
Sivapragasam, C. [1 ]
Muttil, Nitin [2 ]
Jeselia, M. Catherin [3 ]
Visweshwaran, S. [1 ]
机构
[1] Kalasalingam Univ, Dept Civil Engn, Madras 626126, Tamil Nadu, India
[2] Univ Victoria, Coll Engn & Sci, Victoria, BC V8W 2Y2, Canada
[3] NITK Surathkal, Dept Civil Engn, Mangalore 575025, Karnataka, India
来源
INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE'15) | 2015年 / 4卷
关键词
infilling rainfall; mathematical model; genetic programming; rain gauge stations; RECORDS;
D O I
10.1016/j.aqpro.2015.02.128
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The study suggests the use of Genetic Programming (GP) based monthly model for infilling of missing rainfall records in the rainfall time series for 3 rain gauge stations in the Yarra River Basin in Australia from the available rainfall information from the nearby stations. This study compares simple linear model, polynomial model, logarithmic model and a complex model based on GP to infill the missing monthly rainfalls. The RMSE and CC values of the validation data indicate the potential of the suggested model. Further, it is also interesting to note that GP evolved mathematical models are able to predict the subtle inherent nonlinearity in the apparently predominantly linear behavior of the process. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1016 / 1022
页数:7
相关论文
共 50 条
  • [41] Using Sector Information with Linear Genetic Programming for Intraday Equity Price Trend Analysis
    Wilson, Garnett
    Leblanc, Derek
    Banzhaf, Wolfgang
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [42] Learning to Rank for Information Retrieval Using Layered Multi-Population Genetic Programming
    Lin, Jung Yi
    Yeh, Jen-Yuan
    Liu, Chao Chung
    2012 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND CYBERNETICS (CYBERNETICSCOM), 2012, : 45 - 49
  • [43] Term-Weighting in Information Retrieval using Genetic Programming: A three stage process
    Cummins, Ronan
    O'Riordan, Colm
    ECAI 2006, PROCEEDINGS, 2006, 141 : 793 - 794
  • [44] Information transformation by virus-evolutionary genetic programming
    Naoyuki Kubota
    Fumio Kojima
    Setsuo Hashimoto
    Toshio Fukuda
    Artificial Life and Robotics, 2000, 4 (3) : 171 - 174
  • [45] An Implementation of Weighted Moving Average and Genetic Programming for Rainfall Forecasting in Bandung Regency
    Putra, Budy Utama
    Nhita, Fhira
    Adiwijaya
    Saepudin, Deni
    Wisesty, Untari Novia
    2017 INTERNATIONAL CONFERENCE ON CONTROL, ELECTRONICS, RENEWABLE ENERGY AND COMMUNICATIONS (ICCREC), 2017, : 169 - 173
  • [46] Geomorphology-based genetic programming approach for rainfall-runoff modeling
    Nourani, Vahid
    Komasi, Mehdi
    Alami, Mohamad Taghi
    JOURNAL OF HYDROINFORMATICS, 2013, 15 (02) : 427 - 445
  • [47] Incorporating basic hydrological concepts into genetic programming for rainfall-runoff forecasting
    Havlicek, Vojtech
    Hanel, Martin
    Maca, Petr
    Kuraz, Michal
    Pech, Pavel
    COMPUTING, 2013, 95 (01) : S363 - S380
  • [48] Decomposition genetic programming: An extensive evaluation on rainfall prediction in the context of weather derivatives
    Cramer, Sam
    Kampouridis, Michael
    Freitas, Alex A.
    APPLIED SOFT COMPUTING, 2018, 70 : 208 - 224
  • [49] Incorporating basic hydrological concepts into genetic programming for rainfall-runoff forecasting
    Vojtěch Havlíček
    Martin Hanel
    Petr Máca
    Michal Kuráž
    Pavel Pech
    Computing, 2013, 95 : 363 - 380
  • [50] Stochastic model genetic programming: Deriving pricing equations for rainfall weather derivatives
    Cramer, Sam
    Kampouridis, Michael
    Freitas, Alex A.
    Alexandridis, Antonis
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 46 : 184 - 200