Infilling of Rainfall Information using Genetic Programming

被引:10
|
作者
Sivapragasam, C. [1 ]
Muttil, Nitin [2 ]
Jeselia, M. Catherin [3 ]
Visweshwaran, S. [1 ]
机构
[1] Kalasalingam Univ, Dept Civil Engn, Madras 626126, Tamil Nadu, India
[2] Univ Victoria, Coll Engn & Sci, Victoria, BC V8W 2Y2, Canada
[3] NITK Surathkal, Dept Civil Engn, Mangalore 575025, Karnataka, India
来源
INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE'15) | 2015年 / 4卷
关键词
infilling rainfall; mathematical model; genetic programming; rain gauge stations; RECORDS;
D O I
10.1016/j.aqpro.2015.02.128
中图分类号
P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The study suggests the use of Genetic Programming (GP) based monthly model for infilling of missing rainfall records in the rainfall time series for 3 rain gauge stations in the Yarra River Basin in Australia from the available rainfall information from the nearby stations. This study compares simple linear model, polynomial model, logarithmic model and a complex model based on GP to infill the missing monthly rainfalls. The RMSE and CC values of the validation data indicate the potential of the suggested model. Further, it is also interesting to note that GP evolved mathematical models are able to predict the subtle inherent nonlinearity in the apparently predominantly linear behavior of the process. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:1016 / 1022
页数:7
相关论文
共 50 条
  • [1] Predicting Rainfall in the Context of Rainfall Derivatives Using Genetic Programming
    Cramer, Sam
    Kampouridis, Michael
    Freitas, Alex A.
    Alexandridis, Antonis
    2015 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2015, : 711 - 718
  • [2] Modelling rainfall-runoff using genetic programming
    Whigham, PA
    Crapper, PF
    MATHEMATICAL AND COMPUTER MODELLING, 2001, 33 (6-7) : 707 - 721
  • [3] Rainfall-runoff modelling using genetic programming
    Rodriguez-Vazquez, K.
    Arganis-Juarez, M. L.
    Cruickshank-Villanueva, C.
    Dominguez-Mora, R.
    JOURNAL OF HYDROINFORMATICS, 2012, 14 (01) : 108 - 121
  • [4] Improved spatial interpolation of rainfall using Genetic Programming
    Adhikary, S. K.
    Yilmaz, A. G.
    Muttil, N.
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 2214 - 2220
  • [5] Pricing Rainfall Based Futures Using Genetic Programming
    Cramer, Sam
    Kampouridis, Michael
    Freitas, Alex A.
    Alexandridis, Antonis K.
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2017, PT I, 2017, 10199 : 17 - 33
  • [6] Rainfall-Runoff Modelling Using Genetic Programming
    Jayawardena, A. W.
    Muttil, N.
    Fernando, T. M. K. G.
    MODSIM 2005: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING: ADVANCES AND APPLICATIONS FOR MANAGEMENT AND DECISION MAKING, 2005, : 1841 - 1847
  • [7] Wave forecasts using wind information and genetic programming
    Nitsure, S. P.
    Londhe, S. N.
    Khare, K. C.
    OCEAN ENGINEERING, 2012, 54 : 61 - 69
  • [8] Genetic Programming for Downscaling Extreme Rainfall Events
    Hadipour, Sahar
    Shahid, Shamsuddin
    bin Harun, Sobri
    Wang, Xiao-jun
    2013 FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, MODELLING AND SIMULATION (AIMS 2013), 2013, : 331 - 334
  • [9] Rainfall runoff modelling based on genetic programming
    Babovic, V
    Keijzer, M
    NORDIC HYDROLOGY, 2002, 33 (05) : 331 - 346
  • [10] Seasonal rainfall hindcasting using ensemble multi-stage genetic programming
    Ali Danandeh Mehr
    Theoretical and Applied Climatology, 2021, 143 : 461 - 472