Fast hierarchical multimodal structuring of time slots

被引:0
|
作者
Poli, Jean-Philippe [1 ]
Philippeau, Jeremy [1 ,2 ]
Pinquier, Julien [2 ]
Carrive, Jean [1 ]
机构
[1] Inst Natl Audiovisuel, 4 Ave Europe, F-94366 Bry Sur Marne, France
[2] CNRS, UPS, IRIT, INP,UT 1, F-31062 Toulouse, France
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
TV stream structuring consists primarily in breaking down the stream into advertisings, telecasts and time slots. These time slots and telecasts need then to be structured. This paper focuses on the structuring of one of the dayparts: the morning drive. The challenge resides in these morning drives' components heterogeneity under a same theme and branding:. music, weather, news, sets, advertisings and reports are mixed. Classical structuring methods concern videos with homogeneous components, like sport games, and need few features. We propose here a solution to time slots structuring by modeling morning drives' structure in order to decrease the number of needed detections and to decrease the number of false alarms. Good results are obtained since 97 % of the segments are correctly retrieved and since the accuracy of the retrieved structure is approximately 5 seconds.
引用
收藏
页码:77 / +
页数:3
相关论文
共 50 条
  • [21] Hierarchical Multimodal Metric Learning for Multimodal Classification
    Zhang, Heng
    Patel, Vishal M.
    Chellappa, Rama
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2925 - 2933
  • [22] Multimodal coupling matrix for an array of rectangular slots on conducting cylinder
    Lech, Rafal
    Kusiek, Adam
    2012 19th International Conference on Microwave Radar and Wireless Communications (MIKON), Vols 1 and 2, 2012, : 396 - 401
  • [23] Fast, Linear Time Hierarchical Clustering using the Baire Metric
    Contreras, Pedro
    Murtagh, Fionn
    JOURNAL OF CLASSIFICATION, 2012, 29 (02) : 118 - 143
  • [24] THE TIME SLOTS IN THE NEW LIFE
    Sbacchi, Diego
    LETTERE ITALIANE, 2015, 67 (01) : 127 - 139
  • [25] Fast computation of reconciled forecasts for hierarchical and grouped time series
    Hyndman, Rob J.
    Lee, Alan J.
    Wang, Earo
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 97 : 16 - 32
  • [26] Fast, Linear Time Hierarchical Clustering using the Baire Metric
    Pedro Contreras
    Fionn Murtagh
    Journal of Classification, 2012, 29 : 118 - 143
  • [27] Real-Time Fast Structuring of Polymers Using Synchrotron WAXD/SAXS Techniques
    Portale, Giuseppe
    Troisi, Enrico M.
    Peters, Gerrit W. M.
    Bras, Wim
    POLYMER CRYSTALLIZATION II: FROM CHAIN MICROSTRUCTURE TO PROCESSING, 2017, 277 : 127 - 165
  • [28] A hierarchical approach to multimodal classification
    Skowron, A
    Wang, H
    Wojna, A
    Bazan, J
    ROUGH SETS, FUZZY SETS, DATA MINING, AND GRANULAR COMPUTING, PT 2, PROCEEDINGS, 2005, 3642 : 119 - 127
  • [29] Materials with multimodal hierarchical porosity
    Pudlo, W
    Gawlik, W
    Mrowiec-Bialon, J
    Buczek, T
    Malinowski, JJ
    Jarzebski, AB
    INZYNIERIA CHEMICZNA I PROCESOWA, 2006, 27 (01): : 177 - 185
  • [30] Structuring water rights in China: a hierarchical framework
    Wang, Yahua
    Wan, Tingting
    Biswas, Asit K.
    INTERNATIONAL JOURNAL OF WATER RESOURCES DEVELOPMENT, 2018, 34 (03) : 418 - 433