Fast, Linear Time Hierarchical Clustering using the Baire Metric

被引:12
|
作者
Contreras, Pedro [1 ,2 ]
Murtagh, Fionn [3 ,4 ]
机构
[1] Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
[2] ThinkingSafe Ltd, Egham, Surrey, England
[3] Univ London, Dublin, Ireland
[4] Sci Fdn Ireland, Dublin, Ireland
关键词
Hierarchical clustering; Ultrametric; Redshift; k-means; p-adic; m-adic; Baire; Longest common prefix; ULTRAMETRICITY; DENDROGRAMS; COMPUTATION;
D O I
10.1007/s00357-012-9106-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Baire metric induces an ultrametric on a dataset and is of linear computational complexity, contrasted with the standard quadratic time agglomerative hierarchical clustering algorithm. In this work we evaluate empirically this new approach to hierarchical clustering. We compare hierarchical clustering based on the Baire metric with (i) agglomerative hierarchical clustering, in terms of algorithm properties; (ii) generalized ultrametrics, in terms of definition; and (iii) fast clustering through k-means partitioning, in terms of quality of results. For the latter, we carry out an in depth astronomical study. We apply the Baire distance to spectrometric and photometric redshifts from the Sloan Digital Sky Survey using, in this work, about half a million astronomical objects. We want to know how well the (more costly to determine) spectrometric redshifts can predict the (more easily obtained) photometric redshifts, i.e. we seek to regress the spectrometric on the photometric redshifts, and we use clusterwise regression for this.
引用
收藏
页码:118 / 143
页数:26
相关论文
共 50 条
  • [1] Fast, Linear Time Hierarchical Clustering using the Baire Metric
    Pedro Contreras
    Fionn Murtagh
    Journal of Classification, 2012, 29 : 118 - 143
  • [2] Linear Storage and Potentially Constant Time Hierarchical Clustering Using the Baire Metric and Random Spanning Paths
    Murtagh, Fionn
    Contreras, Pedro
    ANALYSIS OF LARGE AND COMPLEX DATA, 2016, : 43 - 52
  • [3] FAST REDSHIFT CLUSTERING WITH THE BAIRE (ULTRA) METRIC
    Murtagh, F.
    Contreras, P.
    SCIENCE: IMAGE IN ACTION, 2012, : 64 - 76
  • [4] Fast Hierarchical Clustering from the Baire Distance
    Contreras, Pedro
    Murtagh, Fionn
    CLASSIFICATION AS A TOOL FOR RESEARCH, 2010, : 235 - 243
  • [5] Fast, Linear Time, m-Adic Hierarchical Clustering for Search and Retrieval Using the Baire Metric, with Linkages to Generalized Ultrametrics, Hashing, Formal Concept Analysis, and Precision of Data Measurement
    Murtagh, F.
    Contreras, P.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2012, 4 (01) : 46 - 56
  • [6] Fast, linear time, m-adic hierarchical clustering for search and retrieval using the Baire metric, with linkages to generalized ultrametrics, hashing, formal concept analysis, and precision of data measurement
    F. Murtagh
    P. Contreras
    P-Adic Numbers, Ultrametric Analysis, and Applications, 2012, 4 (1) : 46 - 56
  • [7] Fast Hierarchical Graph Clustering in Linear-Time
    Rossi, Ryan A.
    Ahmed, Nesreen K.
    Koh, Eunyee
    Kim, Sungchul
    WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, : 10 - 12
  • [8] CLUSTERING OF TIME SERIES USING A HIERARCHICAL LINEAR DYNAMICAL SYSTEM
    Cinar, Goktug T.
    Principe, Jose C.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [9] Random Projection Towards the Baire Metric for High Dimensional Clustering
    Murtagh, Fionn
    Contreras, Pedro
    STATISTICAL LEARNING AND DATA SCIENCES, 2015, 9047 : 424 - 431
  • [10] Hierarchical clustering on metric lattice
    Meng X.
    Liu M.
    Wu J.
    Zhou H.
    Xu F.
    Wu Q.
    International Journal of Intelligent Information and Database Systems, 2020, 13 (01) : 1 - 16