Fast, Linear Time Hierarchical Clustering using the Baire Metric

被引:12
|
作者
Contreras, Pedro [1 ,2 ]
Murtagh, Fionn [3 ,4 ]
机构
[1] Univ London, Dept Comp Sci, Egham TW20 0EX, Surrey, England
[2] ThinkingSafe Ltd, Egham, Surrey, England
[3] Univ London, Dublin, Ireland
[4] Sci Fdn Ireland, Dublin, Ireland
关键词
Hierarchical clustering; Ultrametric; Redshift; k-means; p-adic; m-adic; Baire; Longest common prefix; ULTRAMETRICITY; DENDROGRAMS; COMPUTATION;
D O I
10.1007/s00357-012-9106-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Baire metric induces an ultrametric on a dataset and is of linear computational complexity, contrasted with the standard quadratic time agglomerative hierarchical clustering algorithm. In this work we evaluate empirically this new approach to hierarchical clustering. We compare hierarchical clustering based on the Baire metric with (i) agglomerative hierarchical clustering, in terms of algorithm properties; (ii) generalized ultrametrics, in terms of definition; and (iii) fast clustering through k-means partitioning, in terms of quality of results. For the latter, we carry out an in depth astronomical study. We apply the Baire distance to spectrometric and photometric redshifts from the Sloan Digital Sky Survey using, in this work, about half a million astronomical objects. We want to know how well the (more costly to determine) spectrometric redshifts can predict the (more easily obtained) photometric redshifts, i.e. we seek to regress the spectrometric on the photometric redshifts, and we use clusterwise regression for this.
引用
收藏
页码:118 / 143
页数:26
相关论文
共 50 条
  • [31] Twister Tries: Approximate Hierarchical Agglomerative Clustering for Average Distance in Linear Time
    Cochez, Michael
    Mou, Hao
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 505 - 517
  • [32] Joint analysis of multiple phenotypes using a clustering linear combination method based on hierarchical clustering
    Li, Xueling
    Zhang, Shuanglin
    Sha, Qiuying
    GENETIC EPIDEMIOLOGY, 2020, 44 (01) : 67 - 78
  • [33] Fuzzy time series prediction using hierarchical clustering algorithms
    Bang, Young-Keun
    Lee, Chul-Heui
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (04) : 4312 - 4325
  • [34] Fast hierarchical clustering based on compressed data
    Rendon, E
    Barandela, R
    16TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL II, PROCEEDINGS, 2002, : 216 - 219
  • [35] Fast tree aggregation for consensus hierarchical clustering
    Audrey Hulot
    Julien Chiquet
    Florence Jaffrézic
    Guillem Rigaill
    BMC Bioinformatics, 21
  • [36] Hierarchical clustering algorithm for fast image retrieval
    Krishnamachari, S
    Abdel-Mottaleb, M
    STORAGE AND RETRIEVAL FOR IMAGE AND VIDEO DATABASES VII, 1998, 3656 : 427 - 435
  • [37] Fast tree aggregation for consensus hierarchical clustering
    Hulot, Audrey
    Chiquet, Julien
    Jaffrezic, Florence
    Rigaill, Guillem
    BMC BIOINFORMATICS, 2020, 21 (01)
  • [38] A Fast Quartet tree heuristic for hierarchical clustering
    Cilibrasi, Rudi L.
    Vitanyi, Paul M. B.
    PATTERN RECOGNITION, 2011, 44 (03) : 662 - 677
  • [39] Fast Plane Extraction in Organized Point Clouds Using Agglomerative Hierarchical Clustering
    Feng, Chen
    Taguchi, Yuichi
    Kamat, Vineet R.
    2014 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2014, : 6218 - 6225
  • [40] Fast Face Recognition Using a Combination of Image Pyramid and Hierarchical Clustering Algorithms
    Momeni, Hajar
    Sadeghi, Mohammad T.
    Abutalebi, Hamid R.
    2009 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP 2009), 2009, : 1332 - 1336