The IDS and asymptotic of the largest eigenvalue of random Schrodinger operators with decaying random potential

被引:2
|
作者
Dolai, Dhriti Ranjan [1 ]
机构
[1] Indian Inst Technol Dharwad, Dharwad 580011, Karnataka, India
关键词
Random Schrodinger operators; integrated density of states; decaying random potential; ground states; ANDERSON MODEL; GROUND-STATE;
D O I
10.1142/S0129055X21500264
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we obtain the integrated density of states for the Schrodinger operators with decaying random potentials acting on l(2)(Z(d)). We also study the asymptotic of the largest and smallest eigenvalues of its finite volume approximation.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] EIGENVALUE DISTRIBUTION OF RANDOM OPERATORS AND MATRICES
    PASTUR, L
    ASTERISQUE, 1992, (206) : 445 - 461
  • [32] Random discrete Schrodinger operators from random matrix theory
    Breuer, Jonathan
    Forrester, Peter J.
    Smilansky, Uzy
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (05) : F161 - F168
  • [33] Harmonic Analysis and Random Schrodinger Operators
    Taeufer, Matthias
    Tautenhahn, Martin
    Veselic, Ivan
    SPECTRAL THEORY AND MATHEMATICAL PHYSICS, 2016, 254 : 223 - 255
  • [34] ON A CLASS OF RANDOM SCHRODINGER-OPERATORS
    KIRSCH, W
    ADVANCES IN APPLIED MATHEMATICS, 1985, 6 (02) : 177 - 187
  • [35] Dynamical localisation for random Schrodinger operators
    Germinet, F
    de Bievre, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (02): : 261 - 264
  • [36] Random Schrodinger operators with wavelet interactions
    Hislop, P
    Kirsch, W
    Krishna, M
    WAVELETS AND ALLIED TOPICS, 2001, : 109 - 116
  • [37] Schrodinger Operators with Random δ Magnetic Fields
    Mine, Takuya
    Nomura, Yuji
    ANNALES HENRI POINCARE, 2017, 18 (04): : 1349 - 1369
  • [38] RANDOM SCHRODINGER-OPERATORS A COURSE
    KIRSCH, W
    SCHRODINGER OPERATORS /, 1989, 345 : 264 - 370
  • [39] Lifshitz tails for random Schrodinger operators with negative singular Poisson potential
    Klopp, F
    Pastur, L
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 206 (01) : 57 - 103
  • [40] STUDY OF SCHRODINGER-OPERATORS OF RANDOM POTENTIAL IN DIMENSION-ONE
    ROYER, G
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1982, 110 (01): : 27 - 48