The IDS and asymptotic of the largest eigenvalue of random Schrodinger operators with decaying random potential

被引:2
|
作者
Dolai, Dhriti Ranjan [1 ]
机构
[1] Indian Inst Technol Dharwad, Dharwad 580011, Karnataka, India
关键词
Random Schrodinger operators; integrated density of states; decaying random potential; ground states; ANDERSON MODEL; GROUND-STATE;
D O I
10.1142/S0129055X21500264
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we obtain the integrated density of states for the Schrodinger operators with decaying random potentials acting on l(2)(Z(d)). We also study the asymptotic of the largest and smallest eigenvalues of its finite volume approximation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] The largest eigenvalue of sparse random graphs
    Krivelevich, M
    Sudakov, B
    COMBINATORICS PROBABILITY & COMPUTING, 2003, 12 (01): : 61 - 72
  • [22] Spectral Fluctuations for Schrödinger Operators with a Random Decaying Potential
    Jonathan Breuer
    Yoel Grinshpon
    Moshe J. White
    Annales Henri Poincaré, 2021, 22 : 3763 - 3794
  • [23] Eigenvalue Order Statistics for Random Schrodinger Operators with Doubly-Exponential Tails
    Biskup, M.
    Koenig, W.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) : 179 - 218
  • [24] RANDOM SCHRODINGER-OPERATORS
    CARMONA, R
    LECTURE NOTES IN MATHEMATICS, 1986, 1180 : 1 - 121
  • [25] Lectures on Random Schrodinger Operators
    Hislop, Peter D.
    FOURTH SUMMER SCHOOL IN ANALYSIS AND MATHEMATICAL PHYSICS: TOPIC IN SPECTRAL THEORY AND QUANTUM MECHANICS, 2008, 476 : 41 - 131
  • [26] Improved Eigenvalue Bounds for Schrodinger Operators with Slowly Decaying Potentials
    Cuenin, Jean-Claude
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (03) : 2147 - 2160
  • [27] On the Largest Singular Value/Eigenvalue of a Random Tensor
    Yang, Yuning
    FRONTIERS OF MATHEMATICS, 2023, 18 (06): : 1447 - 1458
  • [28] On the Largest Singular Value/Eigenvalue of a Random Tensor
    Yuning Yang
    Frontiers of Mathematics, 2023, 18 : 1447 - 1458
  • [29] On the singular spectrum of Schrodinger operators with decaying potential
    Denisov, S
    Kupin, S
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (04) : 1525 - 1544
  • [30] RANDOM TOEPLITZ OPERATORS AND EIGENVALUE DISTRIBUTION
    Ke, Wen-Fong
    Lai, King-Fai
    Lee, Tsung-Lin
    Wong, Ngai-Ching
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2016, 17 (09) : 1717 - 1728