Optimized data fusion for K-means Laplacian clustering

被引:14
|
作者
Yu, Shi [1 ]
Liu, Xinhai [1 ,2 ]
Tranchevent, Leon-Charles [1 ]
Glanzel, Wolfgang [3 ]
Suykens, Johan A. K. [1 ]
De Moor, Bart [1 ]
Moreau, Yves [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, Louvain, Belgium
[2] Wuhan Univ Sci & Technol, Dept Informat Sci & Engn & ERCMAMT, Wuhan, Peoples R China
[3] Katholieke Univ Leuven, Dept Managerial Econ Strategy & Innovat, Ctr R&D Monitoring, Leuven, Belgium
关键词
KERNEL; CONSENSUS;
D O I
10.1093/bioinformatics/btq569
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix.
引用
收藏
页码:118 / 126
页数:9
相关论文
共 50 条
  • [1] Optimized Data Fusion for Kernel k-Means Clustering
    Yu, Shi
    Tranchevent, Leon-Charles
    Liu, Xinhai
    Glanzel, Wolfgang
    Suykens, Johan A. K.
    De Moor, Bart
    Moreau, Yves
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (05) : 1031 - 1039
  • [2] Discriminative K-Means Laplacian Clustering
    Chao, Guoqing
    NEURAL PROCESSING LETTERS, 2019, 49 (01) : 393 - 405
  • [3] K-means - Laplacian clustering revisited
    Rengasamy, Sundar
    Murugesan, Punniyamoorthy
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 107
  • [4] Discriminative K-Means Laplacian Clustering
    Guoqing Chao
    Neural Processing Letters, 2019, 49 : 393 - 405
  • [5] ADAPTIVE USAGE OF K-MEANS IN EVOLUTIONARY OPTIMIZED DATA CLUSTERING
    Wang, Xi
    Sheng, Weiguo
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2017, : 15 - 20
  • [6] Optimized big data K-means clustering using MapReduce
    Cui, Xiaoli
    Zhu, Pingfei
    Yang, Xin
    Li, Keqiu
    Ji, Changqing
    JOURNAL OF SUPERCOMPUTING, 2014, 70 (03): : 1249 - 1259
  • [7] Optimized big data K-means clustering using MapReduce
    Xiaoli Cui
    Pingfei Zhu
    Xin Yang
    Keqiu Li
    Changqing Ji
    The Journal of Supercomputing, 2014, 70 : 1249 - 1259
  • [8] An Optimized Version of the K-Means Clustering Algorithm
    Poteras, Cosmin Marian
    Mihaescu, Marian Cristian
    Mocanu, Mihai
    FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS, 2014, 2014, 2 : 695 - 699
  • [9] Clustering of Image Data Using K-Means and Fuzzy K-Means
    Rahmani, Md. Khalid Imam
    Pal, Naina
    Arora, Kamiya
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2014, 5 (07) : 160 - 163
  • [10] K-Means Clustering With Incomplete Data
    Wang, Siwei
    Li, Miaomiao
    Hu, Ning
    Zhu, En
    Hu, Jingtao
    Liu, Xinwang
    Yin, Jianping
    IEEE ACCESS, 2019, 7 : 69162 - 69171