Optimized Data Fusion for Kernel k-Means Clustering

被引:191
|
作者
Yu, Shi [1 ]
Tranchevent, Leon-Charles [2 ]
Liu, Xinhai [2 ]
Glanzel, Wolfgang [3 ]
Suykens, Johan A. K.
De Moor, Bart [2 ]
Moreau, Yves [2 ]
机构
[1] Univ Chicago, Inst Genom & Syst Biol, Dept Med, Knapp Ctr Biomed Discovery, Chicago, IL 60637 USA
[2] Katholieke Univ Leuven, ESAT SCD, Dept Elect Engn, B-3001 Louvain, Belgium
[3] Katholieke Univ Leuven, Dept Managerial Econ Strategy & Innovat, Ctr R&D Monitoring ECOOM, B-3000 Louvain, Belgium
关键词
Clustering; data fusion; multiple kernel learning; Fisher discriminant analysis; least-squares support vector machine; DISCRIMINANT-ANALYSIS; CONSENSUS;
D O I
10.1109/TPAMI.2011.255
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel optimized kernel k-means algorithm (OKKC) to combine multiple data sources for clustering analysis. The algorithm uses an alternating minimization framework to optimize the cluster membership and kernel coefficients as a nonconvex problem. In the proposed algorithm, the problem to optimize the cluster membership and the problem to optimize the kernel coefficients are all based on the same Rayleigh quotient objective; therefore the proposed algorithm converges locally. OKKC has a simpler procedure and lower complexity than other algorithms proposed in the literature. Simulated and real-life data fusion applications are experimentally studied, and the results validate that the proposed algorithm has comparable performance, moreover, it is more efficient on large-scale data sets. (The Matlab implementation of OKKC algorithm is downloadable from http://homes.esat.kuleuven.be/similar to sistawww/bio/syu/okkc.html.)
引用
收藏
页码:1031 / 1039
页数:9
相关论文
共 50 条
  • [1] Optimized data fusion for K-means Laplacian clustering
    Yu, Shi
    Liu, Xinhai
    Tranchevent, Leon-Charles
    Glanzel, Wolfgang
    Suykens, Johan A. K.
    De Moor, Bart
    Moreau, Yves
    [J]. BIOINFORMATICS, 2011, 27 (01) : 118 - 126
  • [2] Localized Data Fusion for Kernel k-Means Clustering with Application to Cancer Biology
    Gonen, Mehmet
    Margolin, Adam A.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [3] Efficient Multiple Kernel k-Means Clustering With Late Fusion
    Wang, Siwei
    Zhu, En
    Hu, Jingtao
    Li, Miaomiao
    Zhao, Kaikai
    Hu, Ning
    Liu, Xinwang
    [J]. IEEE ACCESS, 2019, 7 : 61109 - 61120
  • [4] Kernel Probabilistic K-Means Clustering
    Liu, Bowen
    Zhang, Ting
    Li, Yujian
    Liu, Zhaoying
    Zhang, Zhilin
    [J]. SENSORS, 2021, 21 (05) : 1 - 16
  • [5] Sparse kernel k-means clustering
    Park, Beomjin
    Park, Changyi
    Hong, Sungchul
    Choi, Hosik
    [J]. JOURNAL OF APPLIED STATISTICS, 2024,
  • [6] Efficient MapReduce Kernel k-Means for Big Data Clustering
    Tsapanos, Nikolaos
    Tefas, Anastasios
    Nikolaidis, Nikolaos
    Pitas, Ioannis
    [J]. 9TH HELLENIC CONFERENCE ON ARTIFICIAL INTELLIGENCE (SETN 2016), 2016,
  • [7] A Kernel K-means Clustering Method for Symbolic Interval Data
    Costa, Anderson F. B. F.
    Pimentel, Bruno A.
    de Souza, Renata M. C. R.
    [J]. 2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [8] Fusion Multiple Kernel K-means
    Zhang, Yi
    Liu, Xinwang
    Liu, Jiyuan
    Dai, Sisi
    Zhang, Changwang
    Xu, Kai
    Zhu, En
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 9109 - 9117
  • [9] ADAPTIVE USAGE OF K-MEANS IN EVOLUTIONARY OPTIMIZED DATA CLUSTERING
    Wang, Xi
    Sheng, Weiguo
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2017, : 15 - 20
  • [10] Optimized big data K-means clustering using MapReduce
    Cui, Xiaoli
    Zhu, Pingfei
    Yang, Xin
    Li, Keqiu
    Ji, Changqing
    [J]. JOURNAL OF SUPERCOMPUTING, 2014, 70 (03): : 1249 - 1259