Optimized data fusion for K-means Laplacian clustering

被引:14
|
作者
Yu, Shi [1 ]
Liu, Xinhai [1 ,2 ]
Tranchevent, Leon-Charles [1 ]
Glanzel, Wolfgang [3 ]
Suykens, Johan A. K. [1 ]
De Moor, Bart [1 ]
Moreau, Yves [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, Louvain, Belgium
[2] Wuhan Univ Sci & Technol, Dept Informat Sci & Engn & ERCMAMT, Wuhan, Peoples R China
[3] Katholieke Univ Leuven, Dept Managerial Econ Strategy & Innovat, Ctr R&D Monitoring, Leuven, Belgium
关键词
KERNEL; CONSENSUS;
D O I
10.1093/bioinformatics/btq569
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: We propose a novel algorithm to combine multiple kernels and Laplacians for clustering analysis. The new algorithm is formulated on a Rayleigh quotient objective function and is solved as a bi-level alternating minimization procedure. Using the proposed algorithm, the coefficients of kernels and Laplacians can be optimized automatically. Results: Three variants of the algorithm are proposed. The performance is systematically validated on two real-life data fusion applications. The proposed Optimized Kernel Laplacian Clustering (OKLC) algorithms perform significantly better than other methods. Moreover, the coefficients of kernels and Laplacians optimized by OKLC show some correlation with the rank of performance of individual data source. Though in our evaluation the K values are predefined, in practical studies, the optimal cluster number can be consistently estimated from the eigenspectrum of the combined kernel Laplacian matrix.
引用
收藏
页码:118 / 126
页数:9
相关论文
共 50 条
  • [31] Social Media Analysis using Optimized K-Means Clustering
    Alsayat, Ahmed
    El-Sayed, Hoda
    2016 IEEE/ACIS 14TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS (SERA), 2016, : 61 - 66
  • [32] Research on k-means Clustering Algorithm An Improved k-means Clustering Algorithm
    Shi Na
    Liu Xumin
    Guan Yong
    2010 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY AND SECURITY INFORMATICS (IITSI 2010), 2010, : 63 - 67
  • [33] Distributed Sparse Subspace Clustering by K-Means Subspace Fusion
    Huang, Liang-Chi
    Hong, Y. -W. Peter
    Wu, Jwo-Yuh
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [34] Image Fusion Base on K-means Clustering and Contourlet Transform
    Wang Liangku
    Li Chengjin
    Wang Qing
    Yang Zhaohui
    Wang Zhijie
    ADVANCED MATERIALS IN MICROWAVES AND OPTICS, 2012, 500 : 540 - +
  • [35] DEM Fusion using a modified k-means clustering algorithm
    Fuss, Colleen E.
    Berg, Aaron A.
    Lindsay, John B.
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2016, 9 (12) : 1242 - 1255
  • [36] Efficient Multiple Kernel k-Means Clustering With Late Fusion
    Wang, Siwei
    Zhu, En
    Hu, Jingtao
    Li, Miaomiao
    Zhao, Kaikai
    Hu, Ning
    Liu, Xinwang
    IEEE ACCESS, 2019, 7 : 61109 - 61120
  • [37] K-Means Cloning: Adaptive Spherical K-Means Clustering
    Hedar, Abdel-Rahman
    Ibrahim, Abdel-Monem M.
    Abdel-Hakim, Alaa E.
    Sewisy, Adel A.
    ALGORITHMS, 2018, 11 (10):
  • [38] An efficient K-means clustering algorithm for tall data
    Capo, Marco
    Perez, Aritz
    Lozano, Jose A.
    DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (03) : 776 - 811
  • [39] An efficient K-means clustering algorithm for tall data
    Marco Capó
    Aritz Pérez
    Jose A. Lozano
    Data Mining and Knowledge Discovery, 2020, 34 : 776 - 811
  • [40] An extension of the K-means algorithm to clustering skewed data
    Volodymyr Melnykov
    Xuwen Zhu
    Computational Statistics, 2019, 34 : 373 - 394