Combined Technologies for Microfabricating Elastomeric Cardiac Tissue Engineering Scaffolds

被引:52
|
作者
Guillemette, Maxime D. [1 ]
Park, Hyoungshin [1 ]
Hsiao, James C. [2 ]
Jain, Saloni R. [1 ]
Larson, Benjamin L. [1 ]
Langer, Robert [1 ]
Freed, Lisa E. [1 ,2 ]
机构
[1] MIT, Harvard Mit Div Hlth Sci & Technol, Cambridge, MA 02139 USA
[2] Charles Stark Draper Lab Inc, Biomed Engn & MEMS Fabricat Grp, Cambridge, MA 02139 USA
关键词
biodegradable; cell orientation; elastomers; microfabrication; tissue engineering; MECHANICAL-PROPERTIES; CELLS; HEART; TOPOGRAPHY; SURFACES; GRAFTS; MICRO; FIBROBLASTS; ORIENTATION; FABRICATION;
D O I
10.1002/mabi.201000165
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Polymer scaffolds that direct elongation and orientation of cultured cells can enable tissue engineered muscle to act as a mechanically functional unit. We combined micromolding and microablation technologies to create muscle tissue engineering scaffolds from the biodegradable elastomer poly(glycerol sebacate). These scaffolds exhibited well defined surface patterns and pores and robust elastomeric tensile mechanical properties. Cultured C2C12 muscle cells penetrated the pores to form spatially controlled engineered tissues. Scanning electron and confocal microscopy revealed muscle cell orientation in a preferential direction, parallel to micromolded gratings and long axes of microablated anisotropic pores, with significant individual and interactive effects of gratings and pore design.
引用
收藏
页码:1330 / 1337
页数:8
相关论文
共 50 条
  • [1] Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering
    Ahadian, Samad
    Huyer, Locke Davenport
    Estili, Mehdi
    Yee, Bess
    Smith, Nathaniel
    Xu, Zhensong
    Sun, Yu
    Radisic, Milica
    [J]. ACTA BIOMATERIALIA, 2017, 52 : 81 - 91
  • [2] Polymeric scaffolds for cardiac tissue engineering: requirements and fabrication technologies
    Boffito, Monica
    Sartori, Susanna
    Ciardelli, Gianluca
    [J]. POLYMER INTERNATIONAL, 2014, 63 (01) : 2 - 11
  • [3] Biodegradable elastomeric scaffolds for soft tissue engineering
    Pêgo, AP
    Poot, AA
    Grijpma, DW
    Feijen, J
    [J]. JOURNAL OF CONTROLLED RELEASE, 2003, 87 (1-3) : 69 - 79
  • [4] Elastomeric PGS Scaffolds in Arterial Tissue Engineering
    Lee, Kee-Won
    Wang, Yadong
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2011, (50):
  • [5] Perfusion Seeding of Channeled Elastomeric Scaffolds with Myocytes and Endothelial Cells for Cardiac Tissue Engineering
    Maidhof, Robert
    Marsano, Anna
    Lee, Eun Jung
    Vunjak-Novakovic, Gordana
    [J]. BIOTECHNOLOGY PROGRESS, 2010, 26 (02) : 565 - 572
  • [6] Nanoengineered Osteoinductive and Elastomeric Scaffolds for Bone Tissue Engineering
    Kerativitayanan, Punyavee
    Tatullo, Marco
    Khariton, Margarita
    Joshi, Pooja
    Perniconi, Barbara
    Gaharwar, Akhilesh K.
    [J]. ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (04): : 590 - 600
  • [7] Scaffolds for epithelial tissue engineering customized in elastomeric molds
    Abdallah, Mohamed-Nur
    Abdollahi, Sara
    Laurenti, Marco
    Fang, Dongdong
    Tran, Simon D.
    Cerruti, Marta
    Tamimi, Faleh
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2018, 106 (02) : 880 - 890
  • [8] Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering
    Gao, Jin
    Crapo, Peter M.
    Wang, Yadong
    [J]. TISSUE ENGINEERING, 2006, 12 (04): : 917 - 925
  • [9] Artificial Scaffolds in Cardiac Tissue Engineering
    Roacho-Perez, Jorge A.
    Garza-Trevino, Elsa N.
    Moncada-Saucedo, Nidia K.
    Carriquiry-Chequer, Pablo A.
    Valencia-Gomez, Laura E.
    Matthews, Elizabeth Renee
    Gomez-Flores, Victor
    Simental-Mendia, Mario
    Delgado-Gonzalez, Paulina
    Delgado-Gallegos, Juan Luis
    Padilla-Rivas, Gerardo R.
    Islas, Jose Francisco
    [J]. LIFE-BASEL, 2022, 12 (08):
  • [10] Scaffolds for tissue engineering of cardiac valves
    Jana, S.
    Tefft, B. J.
    Spoon, D. B.
    Simari, R. D.
    [J]. ACTA BIOMATERIALIA, 2014, 10 (07) : 2877 - 2893