Atomic Blocks for Noncommutative Martingales

被引:5
|
作者
Conde-Alonso, Jose M. [1 ]
Parcet, Javier [1 ]
机构
[1] CSIC, Inst Ciencias Matemat, CSIC UAM UC3M UCM, Plaza Murillo 2, E-28049 Madrid, Spain
基金
欧洲研究理事会;
关键词
BMO; SPACES;
D O I
10.1512/iumj.2016.65.5860
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a probability space (Omega, Sigma, mu), the Hardy space Hi (Omega) that is associated with the martingale square function does not admit a classical atomic decomposition when the underlying filtration is not regular. In this paper, we construct a decomposition of H-1 (Omega) into "atomic blocks" in the spirit of Tolsa, which we will introduce for martingales. We provide three proofs of this result. Only the first one also applies to noncommutative martingales, the main target of this paper. The other proofs emphasize alternative approaches for commutative martingales. One might be well known to experts, using a weaker notion of atom and approximation by atomic filtrations. The last one adapts Tolsa's argument replacing medians by conditional medians.
引用
收藏
页码:1425 / 1443
页数:19
相关论文
共 50 条
  • [21] Inequalities for Noncommutative Weakly Dominated Martingales and Applications
    Yong Jiao
    Adam Osękowski
    Lian Wu
    Yahui Zuo
    [J]. Communications in Mathematical Physics, 2022, 396 : 787 - 816
  • [22] The sharp weighted maximal inequalities for noncommutative martingales
    Galazka, Tomasz
    Jiao, Yong
    Osekowski, Adam
    Wu, Lian
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 286 (04)
  • [23] Failure of almost uniform convergence for noncommutative martingales
    Hong, Guixiang
    Ricard, Eric
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2024,
  • [24] Duality for symmetric Hardy spaces of noncommutative martingales
    Turdebek N. Bekjan
    [J]. Mathematische Zeitschrift, 2018, 289 : 787 - 802
  • [25] Johnson-Schechtman inequalities for noncommutative martingales
    Jiao, Yong
    Sukochev, Fedor
    Zanin, Dmitriy
    Zhou, Dejian
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (03) : 976 - 1016
  • [26] Square Functions for Noncommutative Differentially Subordinate Martingales
    Yong Jiao
    Narcisse Randrianantoanina
    Lian Wu
    Dejian Zhou
    [J]. Communications in Mathematical Physics, 2020, 374 : 975 - 1019
  • [27] Duality for symmetric Hardy spaces of noncommutative martingales
    Bekjan, Turdebek N.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2018, 289 (3-4) : 787 - 802
  • [28] Φ-MOMENT INEQUALITIES FOR NONCOMMUTATIVE DIFFERENTIALLY SUBORDINATE MARTINGALES
    Jiao, Yong
    Moslehian, Mohammad Sal
    Wu, Lian
    Zuo, Yahui
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (08) : 3551 - 3564
  • [29] Kolmogorov's law of the iterated logarithm for noncommutative martingales
    Zeng, Qiang
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2015, 51 (03): : 1124 - 1130
  • [30] Weak type inequality for noncommutative differentially subordinated martingales
    Osekowski, Adam
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (3-4) : 553 - 568