Square Functions for Noncommutative Differentially Subordinate Martingales

被引:1
|
作者
Yong Jiao
Narcisse Randrianantoanina
Lian Wu
Dejian Zhou
机构
[1] Central South University,School of Mathematics and Statistics
[2] Miami University,Department of Mathematics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We prove inequalities involving noncommutative differentially subordinate martingales. More precisely, we prove that if x is a self-adjoint noncommutative martingale and y is weakly differentially subordinate to x then y admits a decomposition dy = a + b + c (resp. dy = z + w) where a, b, and c are adapted sequences (resp. z and w are martingale difference sequences) such that: ‖(an)n≥1‖L1,∞(M⊗¯ℓ∞)+‖(∑n≥1εn-1|bn|2)1/2‖1,∞+‖(∑n≥1εn-1|cn∗|2)1/2‖1,∞≤C‖x‖1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} & \| (a_n)_{n \geq 1} \|_{L_{1, \infty} (\mathcal{M} \overline{\otimes} \ell_{\infty})} + \| (\sum_{n \geq 1} \varepsilon_{n-1} |b_{n} |^{2} )^{1/2} \|_{1, \infty} \\ & + \| (\sum_{n \geq 1} \varepsilon_{n-1} |c_{n}^{*} |^{2} )^{1/2} \|_{1, \infty} \leq C \| x \|_1\end{aligned}$$\end{document} (resp.‖(∑n≥1|zn|2)1/2‖1,∞+‖(∑n≥1|wn∗|2)1/2‖1,∞≤C‖x‖1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\| (\sum_{n \geq 1} |z_n|^2 )^{{1}/{2}}\|_{1, \infty}+ \| (\sum_{n \geq 1} |w_n^{*}|^{2} )^{1/2} \|_{1, \infty} \leq C \| x \|_1).}$$\end{document} We also prove strong-type (p,p) versions of the above weak-type results for 1 < p < 2. In order to provide more insights into the interactions between noncommutative differential subordinations and martingale Hardy spaces when 1 ≤ p < 2, we also provide several martingale inequalities with sharp constants which are new and of independent interest.
引用
收藏
页码:975 / 1019
页数:44
相关论文
共 50 条
  • [1] Square Functions for Noncommutative Differentially Subordinate Martingales
    Jiao, Yong
    Randrianantoanina, Narcisse
    Wu, Lian
    Zhou, Dejian
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 374 (02) : 975 - 1019
  • [2] Inequalities for noncommutative differentially subordinate martingales
    Jiao, Yong
    Osekowski, Adam
    Wu, Lian
    [J]. ADVANCES IN MATHEMATICS, 2018, 337 : 216 - 259
  • [3] Φ-MOMENT INEQUALITIES FOR NONCOMMUTATIVE DIFFERENTIALLY SUBORDINATE MARTINGALES
    Jiao, Yong
    Moslehian, Mohammad Sal
    Wu, Lian
    Zuo, Yahui
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (08) : 3551 - 3564
  • [4] Conditioned square functions for noncommutative martingales
    Randrianantoanina, Narcisse
    [J]. ANNALS OF PROBABILITY, 2007, 35 (03): : 1039 - 1070
  • [5] Sharp Inequalities for Differentially Subordinate Harmonic Functions and Martingales
    Osekowski, Adam
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2012, 55 (03): : 597 - 610
  • [6] Weighted exponential inequality for differentially subordinate martingales
    Brzozowski, Michal
    [J]. ARCHIV DER MATHEMATIK, 2021, 116 (06) : 707 - 720
  • [7] Weighted maximal inequality for differentially subordinate martingales
    Osekowski, Adam
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2016, 21
  • [8] Weighted exponential inequality for differentially subordinate martingales
    Michał Brzozowski
    [J]. Archiv der Mathematik, 2021, 116 : 707 - 720
  • [9] A WEIGHTED MAXIMAL INEQUALITY FOR DIFFERENTIALLY SUBORDINATE MARTINGALES
    Banuelos, Rodrigo
    Osekowski, Adam
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) : 2263 - 2275
  • [10] A remark on maximal functions for noncommutative martingales
    Randrianantoanina, Narcisse
    [J]. ARCHIV DER MATHEMATIK, 2013, 101 (06) : 541 - 548