We prove inequalities involving noncommutative differentially subordinate martingales. More precisely, we prove that if x is a self-adjoint noncommutative martingale and y is weakly differentially subordinate to x then y admits a decomposition dy = a + b + c (resp. dy = z + w) where a, b, and c are adapted sequences (resp. z and w are martingale difference sequences) such that:
‖(an)n≥1‖L1,∞(M⊗¯ℓ∞)+‖(∑n≥1εn-1|bn|2)1/2‖1,∞+‖(∑n≥1εn-1|cn∗|2)1/2‖1,∞≤C‖x‖1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} & \| (a_n)_{n \geq 1} \|_{L_{1, \infty} (\mathcal{M} \overline{\otimes} \ell_{\infty})} + \| (\sum_{n \geq 1} \varepsilon_{n-1} |b_{n} |^{2} )^{1/2} \|_{1, \infty} \\ & + \| (\sum_{n \geq 1} \varepsilon_{n-1} |c_{n}^{*} |^{2} )^{1/2} \|_{1, \infty} \leq C \| x \|_1\end{aligned}$$\end{document}
(resp.‖(∑n≥1|zn|2)1/2‖1,∞+‖(∑n≥1|wn∗|2)1/2‖1,∞≤C‖x‖1).\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\| (\sum_{n \geq 1} |z_n|^2 )^{{1}/{2}}\|_{1, \infty}+ \| (\sum_{n \geq 1} |w_n^{*}|^{2} )^{1/2} \|_{1, \infty} \leq C \| x \|_1).}$$\end{document}
We also prove strong-type (p,p) versions of the above weak-type results for 1 < p < 2. In order to provide more insights into the interactions between noncommutative differential subordinations and martingale Hardy spaces when 1 ≤ p < 2, we also provide several martingale inequalities with sharp constants which are new and of independent interest.