Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy

被引:27
|
作者
Casuso, I.
Fumagalli, L.
Samitier, J.
Padros, E.
Reggiani, L.
Akimov, V.
Gomila, G.
机构
[1] Univ Barcelona, Dept Elect, Barcelona, Spain
[2] IBEC, Lab Nanobioengn, Barcelona, Spain
[3] Univ Autonoma Barcelona, Fac Med, Dept Bioquim & Biol Mol, Unitat Biofis, E-08193 Barcelona, Spain
[4] Univ Autonoma Barcelona, Ctr Estudis Biofis, E-08193 Barcelona, Spain
[5] Univ Lecce, Dipartimento Ingn Innovaz, CNR INFM, Natl Nanotechnol Lab, I-73100 Lecce, Italy
关键词
D O I
10.1088/0957-4484/18/46/465503
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a reliable methodology to perform electron transport measurements at the nanoscale on supported biomembranes by conductive atomic force microscopy (C-AFM). It allows measurement of both ( a) non-destructive conductive maps and (b) force controlled current-voltage characteristics in wide voltage bias range in a reproducible way. Tests experiments were performed on purple membrane monolayers, a two-dimensional (2D) crystal lattice of the transmembrane protein bacteriorhodopsin. Non-destructive conductive images show uniform conductivity of the membrane with isolated nanometric conduction defects. Current-voltage characteristics under different compression conditions show non-resonant tunneling electron transport properties, with two different conduction regimes as a function of the applied bias, in excellent agreement with theoretical predictions. This methodology opens the possibility for a detailed study of electron transport properties of supported biological membranes, and of soft materials in general.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Moire fringes in conductive atomic force microscopy
    Richarz, L.
    He, J.
    Ludacka, U.
    Bourret, E.
    Yan, Z.
    van Helvoort, A. T. J.
    Meier, D.
    APPLIED PHYSICS LETTERS, 2023, 122 (16)
  • [32] Nanoscale spatial mapping of mechanical properties through dynamic atomic force microscopy
    Abooalizadeh Z.
    Sudak L.J.
    Egberts P.
    Beilstein Journal of Nanotechnology, 2019, 10 : 1332 - 1347
  • [33] Indication of quantum mechanical electron transport in human substantia nigra tissue from conductive atomic force microscopy analysis
    Rourk, Christopher J.
    BIOSYSTEMS, 2019, 179 : 30 - 38
  • [34] Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy
    Luria, Justin
    Kutes, Yasemin
    Moore, Andrew
    Zhang, Lihua
    Stach, Eric A.
    Huey, Bryan D.
    NATURE ENERGY, 2016, 1
  • [35] Conductive Atomic Force Microscopy Study of Local Electronic Transport in ZnTe Thin Films
    Kshirsagar, Sachin D.
    Krishna, M. Ghanashyam
    Tewari, Surya P.
    SOLID STATE PHYSICS, VOL 57, 2013, 1512 : 642 - 643
  • [36] Charge transport in CdTe solar cells revealed by conductive tomographic atomic force microscopy
    Luria J.
    Kutes Y.
    Moore A.
    Zhang L.
    Stach E.A.
    Huey B.D.
    Nature Energy, 1 (11)
  • [37] Atomic force microscopy: A versatile tool to probe the physical and chemical properties of supported membranes at the nanoscale
    Picas, Laura
    Milhiet, Pierre-Emmanuel
    Hernandez-Borrell, Jordi
    CHEMISTRY AND PHYSICS OF LIPIDS, 2012, 165 (08) : 845 - 860
  • [38] Nanoscale Electrical Mapping of Two-dimensional Materials by Conductive Atomic Force Microscopy for Transistors Applications
    Giannazzo, F.
    Greco, G.
    Schiliro, E.
    Di Franco, S.
    Deretzis, I.
    Nicotra, G.
    La Magna, A.
    Roccaforte, F.
    NANOINNOVATION 2017, 2018, 1990
  • [39] Nanoscale characterization of hydrogenated and oxidized B-doped homoepitaxial diamond by conductive atomic force microscopy
    Zhang, L
    Sakai, T
    Yoshida, H
    Yamanaka, S
    Okushi, H
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (07) : 4585 - 4589
  • [40] Gate oxide reliability at the nanoscale evaluated by combining conductive atomic force microscopy and constant voltage stress
    Erlbacher, T.
    Yanev, V.
    Rommel, M.
    Bauer, A. J.
    Frey, L.
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2011, 29 (01):