Calculating the power to examine treatment-covariate interactions when planning an individual participant data meta-analysis of randomized trials with a binary outcome

被引:3
|
作者
Riley, Richard D. [1 ]
Hattle, Miriam [1 ]
Collins, Gary S. [2 ,3 ]
Whittle, Rebecca [1 ]
Ensor, Joie [1 ]
机构
[1] Keele Univ, Ctr Prognosis Res, Sch Med, Keele ST5 5BG, Staffs, England
[2] Univ Oxford, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Ctr Stat Med, Oxford, England
[3] Oxford Univ Hosp NHS Fdn Trust, NIHR Oxford Biomed Res Ctr, Oxford, England
基金
英国医学研究理事会;
关键词
individual participant data (IPD); meta-analysis; power; treatment effect modifier; treatment-covariate interaction; CLINICAL-TRIALS; REGRESSION; BIAS;
D O I
10.1002/sim.9538
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Before embarking on an individual participant data meta-analysis (IPDMA) project, researchers and funders need assurance it is worth their time and cost. This should include consideration of how many studies are promising their IPD and, given the characteristics of these studies, the power of an IPDMA including them. Here, we show how to estimate the power of a planned IPDMA of randomized trials to examine treatment-covariate interactions at the participant level (ie, treatment effect modifiers). We focus on a binary outcome with binary or continuous covariates, and propose a three-step approach, which assumes the true interaction size is common to all trials. In step one, the user must specify a minimally important interaction size and, for each trial separately (eg, as obtained from trial publications), the following aggregate data: the number of participants and events in control and treatment groups, the mean and SD for each continuous covariate, and the proportion of participants in each category for each binary covariate. This allows the variance of the interaction estimate to be calculated for each trial, using an analytic solution for Fisher's information matrix from a logistic regression model. Step 2 calculates the variance of the summary interaction estimate from the planned IPDMA (equal to the inverse of the sum of the inverse trial variances from step 1), and step 3 calculates the corresponding power based on a two-sided Wald test. Stata and R code are provided, and two examples given for illustration. Extension to allow for between-study heterogeneity is also considered.
引用
收藏
页码:4822 / 4837
页数:16
相关论文
共 50 条
  • [31] Simulation-based power calculations for planning a two-stage individual participant data meta-analysis
    Ensor J.
    Burke D.L.
    Snell K.I.E.
    Hemming K.
    Riley R.D.
    BMC Medical Research Methodology, 18 (1)
  • [32] Handling incomplete correlated continuous and binary outcomes in meta-analysis of individual participant data
    Gomes, Manuel
    Hatfield, Laura
    Normand, Sharon-Lise
    STATISTICS IN MEDICINE, 2016, 35 (21) : 3676 - 3689
  • [33] Simulation-based power calculations for planning a two-stage individual participant data meta-analysis
    Ensor, Joie
    Burke, Danielle L.
    Snell, Kym I. E.
    Hemming, Karla
    Riley, Richard D.
    BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
  • [34] An Individual Participant Data Meta-Analysis of 13 Randomized Trials to Evaluate the Impact of Prophylactic Use of Heparin in Oncological Patients
    Schunemann, Holger
    Ventresca, Matthew
    Crowther, Mark
    Di Nisio, Marcello
    Briel, Matthias
    Zhou, Qi
    Noble, Simon
    Macbeth, Fergus
    Griffiths, Gareth
    Garcia, David A.
    Lyman, Gary H.
    Iorio, Alfonso
    Mbuagbaw, Lawrence
    Neumann, Ignacio
    Van Es, Nick
    Brozek, Jan
    Guyatt, Gordon
    Streiff, Michael B.
    Brouwers, Melissa
    Baldeh, Tejan
    Marcucci, Maura
    Florez, Ivan
    Solh, Ziad
    Ageno, Walter
    Bleker, Suzanne
    Bozas, George
    Buller, Harry
    Klerk, Clara
    Lebeau, Bernard
    Lecumberri, Ramon
    McBane, Robert D.
    Sideras, Kostandinos
    Maraveyas, Anthony
    Pelzer, Uwe
    Loprinzi, Charles
    Bossuyt, Patrick
    Kahale, Lara
    Akl, Elie A.
    Zulian, Gilbert
    BLOOD, 2017, 130
  • [35] Protocol for a Systematic Review and Individual Participant Data Meta-Analysis of Randomized Trials of Screening for Atrial Fibrillation to Prevent Stroke
    McIntyre, William
    THROMBOSIS AND HAEMOSTASIS, 2023, 123 (03) : 366 - 376
  • [36] Melodic Intonation Therapy for aphasia: A multi-level meta-analysis of randomized controlled trials and individual participant data
    Popescu, Tudor
    Stahl, Benjamin
    Wiernik, Brenton M.
    Haiduk, Felix
    Zemanek, Michaela
    Helm, Hannah
    Matzinger, Theresa
    Beisteiner, Roland
    Fitch, W. Tecumseh
    ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2022, 1516 (01) : 76 - 84
  • [37] Cerebroplacental ratio in predicting adverse perinatal outcome: a meta-analysis of individual participant data
    Heidweiller-Schreurs, C. A. Vollgraff
    van Osch, I. R.
    Heymans, M. W.
    Ganzevoort, W.
    Schoonmade, L. J.
    Box, C. J.
    Mol, B. W. J.
    de Groot, C. J. M.
    Bossuyt, P. M. M.
    de Boer, M. A.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2021, 128 (02) : 226 - 235
  • [38] Tocolysis with nifedipine versus atosiban and perinatal outcome: an individual participant data meta-analysis
    van Winden, Tijn M. S.
    Nijman, Tobias A. J.
    Kleinrouweler, C. Emily
    Salim, Raed
    Kashanian, Maryam
    Al-Omari, Wafa R.
    Pajkrt, Eva
    Mol, Ben W.
    Oudijk, Martijn A.
    Roos, Carolien
    BMC PREGNANCY AND CHILDBIRTH, 2022, 22 (01)
  • [39] Personalized Prediction of Alzheimer's Disease and Its Treatment Effects by Donepezil: An Individual Participant Data Meta-Analysis of Eight Randomized Controlled Trials
    Yoshida, Kazufumi
    Seo, Michael
    Luo, Yan
    Sahker, Ethan
    Cipriani, Andrea
    Leucht, Stefan
    Iwatsubo, Takeshi
    Efthimiou, Orestis
    Furukawa, Toshiaki A.
    JOURNAL OF ALZHEIMERS DISEASE, 2022, 89 (04) : 1143 - 1157
  • [40] Tocolysis with nifedipine versus atosiban and perinatal outcome: an individual participant data meta-analysis
    Tijn M. S. van Winden
    Tobias A. J. Nijman
    C. Emily Kleinrouweler
    Raed Salim
    Maryam Kashanian
    Wafa R. Al-Omari
    Eva Pajkrt
    Ben W. Mol
    Martijn A. Oudijk
    Carolien Roos
    BMC Pregnancy and Childbirth, 22