Calculating the power to examine treatment-covariate interactions when planning an individual participant data meta-analysis of randomized trials with a binary outcome

被引:3
|
作者
Riley, Richard D. [1 ]
Hattle, Miriam [1 ]
Collins, Gary S. [2 ,3 ]
Whittle, Rebecca [1 ]
Ensor, Joie [1 ]
机构
[1] Keele Univ, Ctr Prognosis Res, Sch Med, Keele ST5 5BG, Staffs, England
[2] Univ Oxford, Nuffield Dept Orthopaed Rheumatol & Musculoskelet, Ctr Stat Med, Oxford, England
[3] Oxford Univ Hosp NHS Fdn Trust, NIHR Oxford Biomed Res Ctr, Oxford, England
基金
英国医学研究理事会;
关键词
individual participant data (IPD); meta-analysis; power; treatment effect modifier; treatment-covariate interaction; CLINICAL-TRIALS; REGRESSION; BIAS;
D O I
10.1002/sim.9538
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Before embarking on an individual participant data meta-analysis (IPDMA) project, researchers and funders need assurance it is worth their time and cost. This should include consideration of how many studies are promising their IPD and, given the characteristics of these studies, the power of an IPDMA including them. Here, we show how to estimate the power of a planned IPDMA of randomized trials to examine treatment-covariate interactions at the participant level (ie, treatment effect modifiers). We focus on a binary outcome with binary or continuous covariates, and propose a three-step approach, which assumes the true interaction size is common to all trials. In step one, the user must specify a minimally important interaction size and, for each trial separately (eg, as obtained from trial publications), the following aggregate data: the number of participants and events in control and treatment groups, the mean and SD for each continuous covariate, and the proportion of participants in each category for each binary covariate. This allows the variance of the interaction estimate to be calculated for each trial, using an analytic solution for Fisher's information matrix from a logistic regression model. Step 2 calculates the variance of the summary interaction estimate from the planned IPDMA (equal to the inverse of the sum of the inverse trial variances from step 1), and step 3 calculates the corresponding power based on a two-sided Wald test. Stata and R code are provided, and two examples given for illustration. Extension to allow for between-study heterogeneity is also considered.
引用
收藏
页码:4822 / 4837
页数:16
相关论文
共 50 条
  • [21] Hydroxychloroquine for treatment of non-hospitalized adults with COVID-19: A meta-analysis of individual participant data of randomized trials
    Mitja, Oriol
    Reis, Gilmar
    Boulware, David R.
    Spivak, Adam M.
    Sarwar, Ammar
    Johnston, Christine
    Webb, Brandon
    Hill, Michael D.
    Smith, Davey
    Kremsner, Peter
    Curran, Marla
    Carter, David
    Alexander, Jim
    Corbacho, Marc
    Lee, Todd C.
    Hullsiek, Katherine Huppler
    McDonald, Emily G.
    Hess, Rachel
    Hughes, Michael
    Baeten, Jared M.
    Schwartz, Ilan
    Metz, Luanne
    Richer, Lawrence
    Chew, Kara W.
    Daar, Eric
    Wohl, David
    Dunne, Michael
    CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 2023, 16 (03): : 524 - 535
  • [22] A critical review of methods for the assessment of patient-level interactions in individual participant data meta-analysis of randomized trials, and guidance for practitioners
    Fisher, D. J.
    Copas, A. J.
    Tierney, J. F.
    Parmar, M. K. B.
    JOURNAL OF CLINICAL EPIDEMIOLOGY, 2011, 64 (09) : 949 - 967
  • [23] External validation of risk prediction model for gestational diabetes: Individual participant data meta-analysis of randomized trials
    Ranasinha, Sanjeeva
    Enticott, Joanne
    Harrison, Cheryce L.
    Thangaratinam, Shakila
    Wang, Rui
    Teede, Helena J.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 190
  • [24] Vaginal misoprostol versus vaginal dinoprostone for labor induction: Individual participant data meta-analysis of randomized trials
    Patabendige, Malitha
    Chan, Fei
    Vayssiere, Christophe
    Ehlinger, Virginie
    van Gemund, Nicolette
    Le Cessie, Saskia
    Prager, Martina
    Marions, Lena
    Rozenberg, Patrick
    Chevret, Sylvie
    Young, David
    Le Roux, Paul A.
    Gregson, Sarah
    Waterstone, Mark
    Rolnik, Daniel L.
    Mol, Ben Willem W.
    Li, Wentao
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2024, 230 (01) : S430 - S431
  • [25] Nifedipine maintenance tocolysis and perinatal outcome: an individual participant data meta-analysis
    van Vliet, E. O. G.
    Dijkema, G. H.
    Schuit, E.
    Heida, K. Y.
    Roos, C.
    van der Post, J. A. M.
    Parry, E. C.
    McCowan, L.
    Lyell, D. J.
    El-Sayed, Y. Y.
    Carr, D. B.
    Clark, A. L.
    Mahdy, Z. A.
    Uma, M.
    Sayin, N. C.
    Varol, G. F.
    Mol, B. W.
    Oudijk, M. A.
    BJOG-AN INTERNATIONAL JOURNAL OF OBSTETRICS AND GYNAECOLOGY, 2016, 123 (11) : 1753 - 1760
  • [26] Predictors of Outcome Following Cerebral Aqueductoplasty: An Individual Participant Data Meta-analysis
    Fallah, Aria
    Wang, Anthony C.
    Weil, Alexander G.
    Ibrahim, George M.
    Mansouri, Alireza
    Bhatia, Sanjiv
    NEUROSURGERY, 2016, 78 (02) : 285 - 296
  • [27] Assessing treatment effect moderation in trials of psychological interventions: a case for individual participant data meta-analysis of pooled trials
    Landau, Sabine
    Harris, Victoria
    Leijten, Patty
    Mann, Joanna
    Bonin, Eva-Maria
    Beecham, Jennifer
    Hutchings, Judy
    Scott, Stephen
    Gardner, Frances
    TRIALS, 2017, 18
  • [28] Estimating interactions in individual participant data meta-analysis: a comparison of methods in practice
    Walker, Ruth
    Stewart, Lesley
    Simmonds, Mark
    SYSTEMATIC REVIEWS, 2022, 11 (01)
  • [29] Antihypertensive treatment and risk of cancer: an individual participant data meta-analysis
    Copland, Emma
    Canoy, Dexter
    Nazarzadeh, Milad
    Bidel, Zeinab
    Ramakrishnan, Rema
    Woodward, Mark
    Chalmers, John
    Teo, Koon K.
    Pepine, Carl J.
    Davis, Barry R.
    Kjeldsen, Sverre
    Sundstrom, Johan
    Rahimi, Kazem
    LANCET ONCOLOGY, 2021, 22 (04): : 558 - 570
  • [30] Estimating interactions in individual participant data meta-analysis: a comparison of methods in practice
    Ruth Walker
    Lesley Stewart
    Mark Simmonds
    Systematic Reviews, 11