Computation of Lyapunov-Perron transformation for linear quasi-periodic systems

被引:5
|
作者
Subramanian, Susheelkumar C. [1 ]
Waswa, Peter M. B. [2 ]
Redkar, Sangram [1 ]
机构
[1] Arizona State Univ, Ira A Fulton Sch Engn, Polytech Sch, Mesa, AZ USA
[2] Maxar Technol, Palo Alto, CA USA
关键词
Lyapunov-Perron transformation; quasi-periodic system; nonlinear dynamics; parametric excitation; FLOQUET TRANSFORMATION; SYMBOLIC COMPUTATION; STABILITY;
D O I
10.1177/1077546321993568
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The transformation of a linear time periodic system to a time-invariant system is achieved using the Floquet theory. In this work, the authors attempt to extend the same toward the quasi-periodic systems, using a Lyapunov-Perron transformation. Though a technique to obtain the closed-form expression for the Lyapunov-Perron transformation matrix is missing in the literature, the application of unification of multiple theories would aid in identifying such a transformation. In this work, the authors demonstrate a methodology to obtain the closed-form expression for the Lyapunov-Perron transformation analytically for the case of a commutative quasi-periodic system. In addition, for the case of a noncommutative quasi-periodic system, an intuitive state augmentation and normal form techniques are used to reduce the system to a time-invariant form and obtain Lyapunov-Perron transformation. The results are compared with the numerical techniques for validation.
引用
收藏
页码:1402 / 1417
页数:16
相关论文
共 50 条
  • [41] Classification of Bifurcations of Quasi-Periodic Solutions Using Lyapunov Bundles
    Kamiyama, Kyohei
    Komuro, Motomasa
    Endo, Tetsuro
    Aihara, Kazuyuki
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (12):
  • [42] Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles with singularities
    S. Jitomirskaya
    C. A. Marx
    Journal of Fixed Point Theory and Applications, 2011, 10 : 129 - 146
  • [43] Lyapunov behavior and dynamical localization for quasi-periodic CMV matrices
    Guo, Shuzheng
    Piao, Daxiong
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 606 : 68 - 89
  • [44] Analyticity of the Lyapunov exponents of random products of quasi-periodic cocycles
    Bezerra, Jamerson
    Sanchez, Adriana
    Tall, El Hadji Yaya
    NONLINEARITY, 2023, 36 (06) : 3467 - 3482
  • [45] Continuity of the Lyapunov exponent for analytic quasi-periodic cocycles with singularities
    Jitomirskaya, S.
    Marx, C. A.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2011, 10 (01) : 129 - 146
  • [46] QUANTUM DYNAMICS IN QUASI-PERIODIC SYSTEMS
    ZHONG, JX
    MOSSERI, R
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1995, 7 (44) : 8383 - 8404
  • [47] Quasi-periodic bifurcations in reversible systems
    Heinz Hanßmann
    Regular and Chaotic Dynamics, 2011, 16 : 51 - 60
  • [48] QUASI-PERIODIC MOTIONS OF VORTEX SYSTEMS
    KHANIN, KM
    PHYSICA D, 1982, 4 (02): : 261 - 269
  • [49] COMPUTATION AND TRANSFORMATION OF TRANSFER-FUNCTIONS OF LINEAR PERIODIC SYSTEMS
    ROZENVASSER, EN
    AUTOMATION AND REMOTE CONTROL, 1972, 33 (02) : 220 - +
  • [50] Quasi-periodic bifurcations in reversible systems
    Hanssmann, Heinz
    REGULAR & CHAOTIC DYNAMICS, 2011, 16 (1-2): : 51 - 60