Computation of Lyapunov-Perron transformation for linear quasi-periodic systems

被引:5
|
作者
Subramanian, Susheelkumar C. [1 ]
Waswa, Peter M. B. [2 ]
Redkar, Sangram [1 ]
机构
[1] Arizona State Univ, Ira A Fulton Sch Engn, Polytech Sch, Mesa, AZ USA
[2] Maxar Technol, Palo Alto, CA USA
关键词
Lyapunov-Perron transformation; quasi-periodic system; nonlinear dynamics; parametric excitation; FLOQUET TRANSFORMATION; SYMBOLIC COMPUTATION; STABILITY;
D O I
10.1177/1077546321993568
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
The transformation of a linear time periodic system to a time-invariant system is achieved using the Floquet theory. In this work, the authors attempt to extend the same toward the quasi-periodic systems, using a Lyapunov-Perron transformation. Though a technique to obtain the closed-form expression for the Lyapunov-Perron transformation matrix is missing in the literature, the application of unification of multiple theories would aid in identifying such a transformation. In this work, the authors demonstrate a methodology to obtain the closed-form expression for the Lyapunov-Perron transformation analytically for the case of a commutative quasi-periodic system. In addition, for the case of a noncommutative quasi-periodic system, an intuitive state augmentation and normal form techniques are used to reduce the system to a time-invariant form and obtain Lyapunov-Perron transformation. The results are compared with the numerical techniques for validation.
引用
收藏
页码:1402 / 1417
页数:16
相关论文
共 50 条
  • [31] On the reducibility of systems of analytic quasi-periodic linear functional differential equations
    Arsie, Alessandro
    Samarawickrama-Kuruppuge, Paduma
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (01) : 576 - 591
  • [32] FORCED QUASI-PERIODIC OSCILLATIONS OF LINEAR PARAMETRIC-EXCITED SYSTEMS
    VIEHWEGER, R
    WEYH, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1994, 74 (04): : T83 - T85
  • [33] An Improved Result for Positive Measure Reducibility of Quasi-periodic Linear Systems
    Hai Long He
    Jian Gong You
    Acta Mathematica Sinica, 2006, 22 : 77 - 86
  • [34] A perturbative algorithm for quasi-periodic linear systems close to constant coefficients
    Arnal, Ana
    Casas, Fernando
    Chiralt, Cristina
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 273 : 398 - 409
  • [35] QUASI-PERIODIC SOLUTIONS OF THE LOTKA-VOLTERRA COMPETITION SYSTEMS WITH QUASI-PERIODIC PERTURBATIONS
    Liu, Qihuai
    Qian, Dingbian
    Wang, Zhiguo
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (05): : 1537 - 1550
  • [36] LYAPUNOV EXPONENTS OF DISCRETE QUASI-PERIODIC GEVREY SCHRODINGER EQUATIONS
    Geng, Wenmeng
    Tao, Kai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (06): : 2977 - 2996
  • [37] THE CONTINUITY OF THE LYAPUNOV EXPONENT FOR ANALYTIC QUASI-PERIODIC JACOBI OPERATORS
    Tao, Kai
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON EDUCATION TECHNOLOGY, MANAGEMENT AND HUMANITIES SCIENCE, 2016, 50 : 658 - 662
  • [38] HOLDER CONTINUITY OF LYAPUNOV EXPONENT FOR QUASI-PERIODIC JACOBI OPERATORS
    Tao, Kai
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2014, 142 (04): : 635 - 671
  • [39] ON THE LYAPUNOV EXPONENT FOR SOME QUASI-PERIODIC COCYCLES WITH LARGE PARAMETER
    Ding, Bowen
    Liang, Jinhao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2023, 22 (10) : 3099 - 3119
  • [40] Continuity, positivity and simplicity of the Lyapunov exponents for quasi-periodic cocycles
    Duarte, Pedro
    Klein, Silvius
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2019, 21 (07) : 2051 - 2106